Influenza is a serious public health issue; vulnerable populations, including young children and the elderly, are especially at risk of influenza-related morbidity and mortality. Due to antigenic drift and shift of the virus as well as poor vaccine efficacy in older people, current immunization efforts fall substantially short of providing protection to the population. Research toward developing a universal influenza vaccine have been hindered by a lack of methods to model the human adaptive immune response. In this context, we have recently developed a tonsil organoid system using discarded human tonsil cells from sleep apnea patients that recapitulates at least some of the key features of an adaptive immune response against influenza, including high affinity antibodies specific for Influenza antigens and the HA molecule. We believe that this fully human system will be an ideal platform to explore and manipulate the anti-flu response in humans.
In Aim 1, we will identify the minimal cellular requirements to develop protective influenza-specific T and B cell responses using these organoids.
In Aim 2 we will investigate the immunomodulatory effects of adjuvants, particularly whether they influence the specificity, diversity or affinity of the influenza response.
In Aim 3 we will manipulate the expression of particular genes that are likely to be important in the antibody and T cell responses and which address specific hypotheses-such as does AID play a major role in this response with respect to the specific antibodies that are generated in this system? Other genes that might alter the affinity or glycosylation pattern of the antibodies will also be investigated, as well as at least one that characterizes a uniquely flu specific response (CD38) and is expressed in germinal centers.
In Aim 4 we combine computational modeling with nanoparticle and virosome stimulation of these organoids, test hypotheses about the optimal density of HA head vs stem constructs in order skew the antibody response towards broadly neutralizing, high affinity antibodies. These data could significantly aid the formulation of new vaccine strategies for the much hoped for universal flu vaccine.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057229-17
Application #
9894725
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
17
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Goltsev, Yury; Samusik, Nikolay; Kennedy-Darling, Julia et al. (2018) Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell 174:968-981.e15
Gee, Marvin H; Sibener, Leah V; Birnbaum, Michael E et al. (2018) Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proc Natl Acad Sci U S A 115:E7369-E7378
Cheung, Peggie; Vallania, Francesco; Warsinske, Hayley C et al. (2018) Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell 173:1385-1397.e14
Mamedov, Murad R; Scholzen, Anja; Nair, Ramesh V et al. (2018) A Macrophage Colony-Stimulating-Factor-Producing ?? T Cell Subset Prevents Malarial Parasitemic Recurrence. Immunity 48:350-363.e7
Kooreman, Nigel G; Kim, Youngkyun; de Almeida, Patricia E et al. (2018) Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo. Cell Stem Cell 22:501-513.e7
Haynes, Winston A; Tomczak, Aurelie; Khatri, Purvesh (2018) Gene annotation bias impedes biomedical research. Sci Rep 8:1362
Sweeney, Timothy E; Thomas, Neal J; Howrylak, Judie A et al. (2018) Multicohort Analysis of Whole-Blood Gene Expression Data Does Not Form a Robust Diagnostic for Acute Respiratory Distress Syndrome. Crit Care Med 46:244-251
Kronstad, Lisa M; Seiler, Christof; Vergara, Rosemary et al. (2018) Differential Induction of IFN-? and Modulation of CD112 and CD54 Expression Govern the Magnitude of NK Cell IFN-? Response to Influenza A Viruses. J Immunol 201:2117-2131
Wilk, Aaron J; Blish, Catherine A (2018) Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 103:629-641
Sweeney, Timothy E; Wynn, James L; Cernada, María et al. (2018) Validation of the Sepsis MetaScore for Diagnosis of Neonatal Sepsis. J Pediatric Infect Dis Soc 7:129-135

Showing the most recent 10 out of 249 publications