The Immune Monitoring Core for RadCCORE is comprised of technologies and services offered by two service laboratories within the Duke Human Vaccine Institute (DHVI): Flow Cytometry Facility, and Immune Reconstitution and Biomarker Facility. The RadCCORE Immune Monitoring Core (Core C) will routinely provide investigators with high quality, state-of-the-art cell sorting, multiplex protein arrays, and T cell receptor gene expression analysis for basic and applied research efforts. Services offered in the renewal reflect actual Core C utilization in years 1-5. Alms of the Immune Monitoring Core are: 1) Provide state-of the-art, multi-color, fluorescence activated cell sorting;2) Provide targeted multiplex protein array profiling of biological samples, such as tissue culture supernatant, serum/plasma, and lung lavage fluid, using our BioPlex bead array reader (BioRad);and 3) Provide T cell immune reconstitution monitoring in mice, humans and monkeys by performing T cell receptor excision circle quantification and repertoire analysis of peripheral T cell receptor beta variable gene utilization. By educating and working in collaboration with the RadCCORE scientific program user base we will develop and optimize their specific assays and more effectively utilize the state-of-the-art instrumentation offered by the Immune Monitoring Core. Critical to all three of our aims is a commitment to ongoing development of new assays to anticipate and meet the future needs of the RadCCORE investigators.

Public Health Relevance

The RadCCORE Immune Core will provide high quality, state-of-the-art cell sorting, multiplex protein arrays, and T cell receptor gene expression analysis for their basic and applied research efforts defined in the Projects. Comprehensive and centralized immune monitoring will add value to RadCCORE studies, and will allow investigators to better and more rapidly develop the next generation of radiation countermeasures.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI067798-07
Application #
8306955
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
7
Fiscal Year
2011
Total Cost
$157,189
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Cline, John Mark; Dugan, Greg; Bourland, John Daniel et al. (2018) Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP5+, Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation. Antioxidants (Basel) 7:
Farris, Michael; McTyre, Emory R; Okoukoni, Catherine et al. (2018) Cortical Thinning and Structural Bone Changes in Non-Human Primates after Single-Fraction Whole-Chest Irradiation. Radiat Res 190:63-71
Naqvi, Ibtehaj; Gunaratne, Ruwan; McDade, Jessica E et al. (2018) Polymer-Mediated Inhibition of Pro-invasive Nucleic Acid DAMPs and Microvesicles Limits Pancreatic Cancer Metastasis. Mol Ther 26:1020-1031
Ghandhi, Shanaz A; Turner, Helen C; Shuryak, Igor et al. (2018) Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS One 13:e0191402
Castle, Katherine D; Daniel, Andrea R; Moding, Everett J et al. (2018) Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome. Radiat Res 189:627-633
Jha, Sushmita; Brickey, W June; Ting, Jenny Pan-Yun (2017) Inflammasomes in Myeloid Cells: Warriors Within. Microbiol Spectr 5:
Lee, Jaewoo; Jackman, Jennifer G; Kwun, Jean et al. (2017) Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis. Biomaterials 120:94-102
Andrews, Rachel N; Metheny-Barlow, Linda J; Peiffer, Ann M et al. (2017) Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat Res 187:599-611
Chen, Liang; Wilson, Justin E; Koenigsknecht, Mark J et al. (2017) NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol 18:541-551
Fanning, K M; Pfisterer, B; Davis, A T et al. (2017) Changes in microvascular density differentiate metabolic health outcomes in monkeys with prior radiation exposure and subsequent skeletal muscle ECM remodeling. Am J Physiol Regul Integr Comp Physiol 313:R290-R297

Showing the most recent 10 out of 197 publications