In the event of a nuclear accident or a radiological attack, the exposure to ionizing radiation can cause acute damage to radiosensitive tissues that have rapid turnover rates, including the hematopoietic (H) system and gastrointestinal (GI) tract. After irradiation, an insufficient regeneration of either the hematopoietic system and/or the GI tract can lead to death within a few weeks, which is termed the acute radiation syndrome (ARS). Although significant progress has been made to understand mechanisms underlying the ARS, no FDA approved therapy is available to treat both the H-ARS and the GI-ARS when given at least 24 hours after irradiation. At this time point, the majority of tissue stem/progenitor cells will already be dead. Therefore, there is an urgent need to develop novel medical countermeasures (MCMs) that target master regulators of tissue regeneration in response to radiation injury. The long-term goal of this project is to develop a novel class of MCMs that mitigate both the H-ARS and GI-ARS by targeting calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2). We have shown that inhibition of CaMKK2 by genetic deletion or by the small molecule inhibitor STO-609 is sufficient to stimulate hematopoietic regeneration and mitigate the H-ARS. Remarkably, our preliminary data indicate that deletion of Camkk2 specifically in myeloid cells is sufficient to facilitate blood cell formation following total body irradiation. More recently, we found that deletion of Camkk2 also protected mice from the GI-ARS. Of note, outside the brain, the expression of CaMKK2 is restricted to a small number of cell types, including macrophages and epithelial tuft cells, which share the ability of tuning the regeneration rate of hematopoietic and intestinal stem cells. Based on these findings, we hypothesize that CaMKK2 is an important druggable target to regulate the behavior of hematopoietic and intestinal stem cell niches, and blocking this enzyme 24 hours after irradiation will be sufficient to facilitate tissue regeneration in response to radiation injury. We will test this hypothesis using sophisticated mouse models, CaMKK2 inhibitor, along with primary bone marrow cells and intestinal organoids from human donors. Using these combined approaches, we will define mechanism(s) by which CaMKK2 expressed in myeloid cells mitigate H-ARS, and will determine the impact of acute Camkk2 loss in tuft cells after irradiation on the development of GI-ARS. By completing this grant, we expect to gain new insight into the role of CaMKK2 in regulating both the H-ARS and GI-ARS. More importantly, by more comprehensively understanding mechanism(s) underlying the effects of CaMKK2 inhibition on mitigating the ARS, we will lay the foundation for approval of STO-609 as a medical countermeasure against radiation under the FDA?s Animal Rule.

Public Health Relevance

We have recently identified CaMKK2 as a novel target to mitigate acute effects of radiation on hematopoietic compartment and shown that when provided IP 24-hours posttotal body irradiation, STO-609, a small molecules CaMKK2 inhibitor increases survival of lethally irradiated mice and enhances hematopoietic stem and progenitor cell (HSPC) recovery following sub-lethal TBI. Our preliminary PK plasma data indicate that STO can be delivered orally, and our ongoing studies are aimed at optimizing formulation and dosing for STO-609 oral delivery. Because the development of a novel medical countermeasure, proposed in this application, is considered time critical in the pursuit of treatment of radiation injuries in the wake of a mass casualty, public health emergency, this funding is considered to be time critical.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
2U19AI067798-16
Application #
9940006
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
16
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Cline, John Mark; Dugan, Greg; Bourland, John Daniel et al. (2018) Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP5+, Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation. Antioxidants (Basel) 7:
Farris, Michael; McTyre, Emory R; Okoukoni, Catherine et al. (2018) Cortical Thinning and Structural Bone Changes in Non-Human Primates after Single-Fraction Whole-Chest Irradiation. Radiat Res 190:63-71
Naqvi, Ibtehaj; Gunaratne, Ruwan; McDade, Jessica E et al. (2018) Polymer-Mediated Inhibition of Pro-invasive Nucleic Acid DAMPs and Microvesicles Limits Pancreatic Cancer Metastasis. Mol Ther 26:1020-1031
Ghandhi, Shanaz A; Turner, Helen C; Shuryak, Igor et al. (2018) Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS One 13:e0191402
Castle, Katherine D; Daniel, Andrea R; Moding, Everett J et al. (2018) Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome. Radiat Res 189:627-633
Fanning, K M; Pfisterer, B; Davis, A T et al. (2017) Changes in microvascular density differentiate metabolic health outcomes in monkeys with prior radiation exposure and subsequent skeletal muscle ECM remodeling. Am J Physiol Regul Integr Comp Physiol 313:R290-R297
Swanson, Karen V; Junkins, Robert D; Kurkjian, Cathryn J et al. (2017) A noncanonical function of cGAMP in inflammasome priming and activation. J Exp Med 214:3611-3626
Kurkjian, Cathryn J; Guo, Hao; Montgomery, Nathan D et al. (2017) The Toll-Like Receptor 2/6 Agonist, FSL-1 Lipopeptide, Therapeutically Mitigates Acute Radiation Syndrome. Sci Rep 7:17355
Racioppi, Luigi; Lento, William; Huang, Wei et al. (2017) Calcium/calmodulin-dependent kinase kinase 2 regulates hematopoietic stem and progenitor cell regeneration. Cell Death Dis 8:e3076
Himburg, Heather A; Doan, Phuong L; Quarmyne, Mamle et al. (2017) Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nat Med 23:91-99

Showing the most recent 10 out of 197 publications