The work of the Vaccine Production Core encompasses efforts in three inter-related areas: live, recombinant vector development; novel adjuvant development; and protein production. The efforts that will be pursued in vector and adjuvant development by this CHAVI group will be described. A rationale for pursuing each technology, the work accomplished to date in developing that technology, and the immediate plans for further development of that technology will be described. This CHAVI group will begin to advance the most promising of these technologies into human clinical testing as early as the second year of the funding period. The protein production component of this core will serve the Haynes RO1, the Shaw SLG project, the Sodroski SLG project, and the Structural Biology Core D. Specifically, we will pursue work in the following areas: 1. Live, recombinant vector development a. Recombinant chimeric adenovirus b. Recombinant mycobacteria c. Recombinant vesicular stomatitis virus 2. Novel adjuvant development a. Polymers b. Chemoattractant cytokines c. TLR agonists 3. Recombinant protein production

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI067854-02
Application #
7310456
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
2
Fiscal Year
2006
Total Cost
$1,214,090
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Song, Hongshuo; Giorgi, Elena E; Ganusov, Vitaly V et al. (2018) Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nat Commun 9:1928
Boelen, Lies; Debebe, Bisrat; Silveira, Marcos et al. (2018) Inhibitory killer cell immunoglobulin-like receptors strengthen CD8+ T cell-mediated control of HIV-1, HCV, and HTLV-1. Sci Immunol 3:
Winawer, Melodie R; Griffin, Nicole G; Samanamud, Jorge et al. (2018) Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83:1133-1146
Gelfman, Sahar; Wang, Quanli; McSweeney, K Melodi et al. (2017) Annotating pathogenic non-coding variants in genic regions. Nat Commun 8:236
Mori, Mari; Haskell, Gloria; Kazi, Zoheb et al. (2017) Sensitivity of whole exome sequencing in detecting infantile- and late-onset Pompe disease. Mol Genet Metab 122:189-197
Seaton, Kelly E; Vandergrift, Nathan A; Deal, Aaron W et al. (2017) Computational analysis of antibody dynamics identifies recent HIV-1 infection. JCI Insight 2:
Go, Eden P; Ding, Haitao; Zhang, Shijian et al. (2017) Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. J Virol 91:
Roohi, Jasmin; Crowe, Jennifer; Loredan, Denis et al. (2017) New diagnosis of atypical ataxia-telangiectasia in a 17-year-old boy with T-cell acute lymphoblastic leukemia and a novel ATM mutation. J Hum Genet 62:581-584
Epi4K Consortium; EuroEPINOMICS-RES Consortium; Epilepsy Phenome Genome Project (2017) Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data. Eur J Hum Genet 25:894-899
Liu, Donglai; Wang, Chu; Hora, Bhavna et al. (2017) A strongly selected mutation in the HIV-1 genome is independent of T cell responses and neutralizing antibodies. Retrovirology 14:46

Showing the most recent 10 out of 395 publications