This Core will reside within the labs and offices of Fluorous Technologies, Inc. (FTI), a Pittsburgh-based chemical technology company specializing in synthetic organic chemistry. FTI personnel working on the grant will provide chemistry support services on all five Projects, ranging from production of early-stage chemical discovery libraries at milligram scale to later-stage scale-up of promising lead compounds at gram scale. The Core will also provide general guidance and design input from a chemistry perspective to each of the Projects and Cores as appropriate. There are two main contributions from the Core to the grant: service and research. On the service side, the Core will synthesize in house gram quantities of existing drug candidates, molecular probes and other small molecules needed for laboratory research on all five projects, and will oversee the outsourcing of any synthesis that goes outside of FTI either for reasons of scale or specialized chemistry.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI068021-04
Application #
7678428
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2008-09-01
Budget End
2009-08-31
Support Year
4
Fiscal Year
2008
Total Cost
$307,359
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Lou, Wenjia; Ting, Hsiu-Chi; Reynolds, Christian A et al. (2018) Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1354-1368
Anthonymuthu, Tamil S; Kenny, Elizabeth M; Lamade, Andrew M et al. (2018) Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 124:493-503
Hassannia, Behrouz; Wiernicki, Bartosz; Ingold, Irina et al. (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341-3355
Conrad, Marcus; Kagan, Valerian E; Bayir, Hülya et al. (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32:602-619
Stoyanovsky, Anastas D; Stoyanovsky, Detcho A (2018) 1-Oxo-2,2,6,6-tetramethylpiperidinium bromide converts ?-H N,N-dialkylhydroxylamines to nitrones via a two-electron oxidation mechanism. Sci Rep 8:15323
Zhou, Shuanhu; Glowacki, Julie (2018) Dehydroepiandrosterone and Bone. Vitam Horm 108:251-271
Robinson, Andria R; Yousefzadeh, Matthew J; Rozgaja, Tania A et al. (2018) Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 17:259-273
Gaschler, Michael M; Andia, Alexander A; Liu, Hengrui et al. (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14:507-515
Tyurina, Yulia Y; Shrivastava, Indira; Tyurin, Vladimir A et al. (2018) ""Only a Life Lived for Others Is Worth Living"": Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxid Redox Signal 29:1333-1358
Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Epand, Richard M et al. (2018) NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. Lab Invest 98:228-232

Showing the most recent 10 out of 203 publications