The Pilot Projects Program Core has as its mission the identification and facilitation of funding for innovative new pilot projects to stimulate interaction between chemists and radiation biologists with an ultimate goal of bringing new chemists into the field of radiation biology, specifically the fields of designing new radioprotectors and radiation mitigator drugs. The goals of the Pilot Projects Program Core are: 1. Provide seed funding opportunities for two years for initial investigation of promising novel research in chemistry or drug design for new radiation protectors and radiation mitigators. 2. To simulate both basic clinical and translational research in areas of high priority in radiation protection/radiation mitigation. 3. To facilitate development into full projects of the CMCR, those appropriate pilot projects, or alternatively to stimulate pilot project development to competitive levels for independent investigator initiated proposals to the NIAID or other NIH agencies or other peer-reviewed funding sources. 4. To increase the visibility of the CMCR activities and increase participation between CMCR participating in institutions, clinicians, researchers, but predominantly members of the chemistry departments of major universities to incentivize them for entry into focused participation in radiobiology research. It is the goal of the Pilot Projects Core Facility to bring innovative new projects into the CMCR with an ultimate goal of developing, testing, and delivering new radiation protector and radiation mitigator drugs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI068021-04
Application #
7678431
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2008-09-01
Budget End
2009-08-31
Support Year
4
Fiscal Year
2008
Total Cost
$144,976
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Lou, Wenjia; Ting, Hsiu-Chi; Reynolds, Christian A et al. (2018) Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1354-1368
Anthonymuthu, Tamil S; Kenny, Elizabeth M; Lamade, Andrew M et al. (2018) Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 124:493-503
Hassannia, Behrouz; Wiernicki, Bartosz; Ingold, Irina et al. (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341-3355
Conrad, Marcus; Kagan, Valerian E; Bayir, Hülya et al. (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32:602-619
Stoyanovsky, Anastas D; Stoyanovsky, Detcho A (2018) 1-Oxo-2,2,6,6-tetramethylpiperidinium bromide converts ?-H N,N-dialkylhydroxylamines to nitrones via a two-electron oxidation mechanism. Sci Rep 8:15323
Zhou, Shuanhu; Glowacki, Julie (2018) Dehydroepiandrosterone and Bone. Vitam Horm 108:251-271
Robinson, Andria R; Yousefzadeh, Matthew J; Rozgaja, Tania A et al. (2018) Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 17:259-273
Gaschler, Michael M; Andia, Alexander A; Liu, Hengrui et al. (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14:507-515
Tyurina, Yulia Y; Shrivastava, Indira; Tyurin, Vladimir A et al. (2018) ""Only a Life Lived for Others Is Worth Living"": Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxid Redox Signal 29:1333-1358
Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Epand, Richard M et al. (2018) NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. Lab Invest 98:228-232

Showing the most recent 10 out of 203 publications