Neisseria gonorrhoeae causes a variety of disease syndromes including pelvic iniflammatory disease [PID]. PID can lead to chronic pelvic pain, ectopic pregnancy and infertility. Those syndromes caused by N. gonorrhoeae have, in common, intense inflammation mediated by inflammatory cells. This inflammation is primarily the result of the interaction of neisserial LPS (LOS) v /ith the LPS receptor complex: TLR4 and MD- 2. The components of the LPS receptor were identified a decade ago, yet it is still poorly understood, 1) how the binding of lipid A to MD-2 results in the formation of an active receptor complex, and, 2) how a signal is subsequently transmitted resulting in the production of proinflammatory mediators such as TNFa and IL-ip. In this proposal, we describe plans to determine how MD-2, once bound to lipid A, acquires the ability to activate TLR4. The approach builds upon our success in purifying MD-2, a small molecule with 7 cysteine residues that has a notorious tendency to form inactive multimers. We plan to resolve the structure of MD-2 in the absence and presence of activating ligand, and in the presence of TLR4 to determine what conformational changes in TLR4/MD-2 induce signaling. We shall then focus our energies on TLR4-related adapter molecules involved in cell signaling. We have previously analyzed 5 single nucleotide polymorphisms (SNPs) in the adapter protein known as Mai (used by both TLR2 and TLR4). Two SNPs are of great interest: S180L and D96N. As part of another NIH funded project, we have begun to generate mice carrying these lesions and are screening patient samples for the presence of D96N. Mai knock out mice and knock-in mice carrying the mouse equivalent of D96N or S180L will be tested in the mouse model of GC infection by Dr. Ingalls (PI, project 2). We will perform similar molecular genetic studies of the 6 known SNPs in MyD88, the downstream adapter that interacts with Mai and an important adapter for at least 8 of the TLRs. Should any of the SNPs display a phenotype, we will generate knock-in mice and screen patient samples to determine relevancy. Finally, we will attempt to define the interaction of Mai and MyD88 by biochemical means, culminating in an attempt to co crystallize the Mal/MyD88 dimer.

Public Health Relevance

Gonorrhea causes pelvic inflammatory disease, a major cause of pelvic pain, tubal pregnancies and infertility in women. This proposal seeks to understand how a major lipid that is shed by gonorrhea, called LPS, cause this inflammatory syndrome. We hope that a better understanding of this essential event will allow us to better treat and even to prevent the bad outcome associated with this disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI084048-04
Application #
8381166
Study Section
Special Emphasis Panel (ZAI1-MMT-M)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
4
Fiscal Year
2012
Total Cost
$240,074
Indirect Cost
$51,771
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Wan, Chuan; Li, Yang; Le, Wen-Jing et al. (2018) Increasing Resistance to Azithromycin in Neisseria gonorrhoeae in Eastern Chinese Cities: Resistance Mechanisms and Genetic Diversity among Isolates from Nanjing. Antimicrob Agents Chemother 62:
Nudel, Kathleen; McClure, Ryan; Moreau, Matthew et al. (2018) Transcriptome Analysis of Neisseria gonorrhoeae during Natural Infection Reveals Differential Expression of Antibiotic Resistance Determinants between Men and Women. mSphere 3:
Andrade, Warrison A; Agarwal, Sarika; Mo, Shunyan et al. (2016) Type I Interferon Induction by Neisseria gonorrhoeae: Dual Requirement of Cyclic GMP-AMP Synthase and Toll-like Receptor 4. Cell Rep 15:2438-48
Shaughnessy, Jutamas; Gulati, Sunita; Agarwal, Sarika et al. (2016) A Novel Factor H-Fc Chimeric Immunotherapeutic Molecule against Neisseria gonorrhoeae. J Immunol 196:1732-40
Su, Xiao-Hong; Wang, Bao-Xi; Le, Wen-Jing et al. (2016) Multidrug-Resistant Neisseria gonorrhoeae Isolates from Nanjing, China, Are Sensitive to Killing by a Novel DNA Gyrase Inhibitor, ETX0914 (AZD0914). Antimicrob Agents Chemother 60:621-3
Ayehunie, Seyoum; Islam, Ayesha; Cannon, Chris et al. (2015) Characterization of a Hormone-Responsive Organotypic Human Vaginal Tissue Model: Morphologic and Immunologic Effects. Reprod Sci 22:980-90
Nudel, Kathleen; Massari, Paola; Genco, Caroline A (2015) Neisseria gonorrhoeae Modulates Cell Death in Human Endocervical Epithelial Cells through Export of Exosome-Associated cIAP2. Infect Immun 83:3410-7
Gulati, Sunita; Mu, Xin; Zheng, Bo et al. (2015) Antibody to reduction modifiable protein increases the bacterial burden and the duration of gonococcal infection in a mouse model. J Infect Dis 212:311-5
Lewis, Lisa A; Gulati, Sunita; Burrowes, Elizabeth et al. (2015) ?-2,3-sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonorrhoeae to colonize the murine genital tract. MBio 6:
Lewis, Lisa A; Ram, Sanjay (2014) Meningococcal disease and the complement system. Virulence 5:98-126

Showing the most recent 10 out of 41 publications