Systemic immune responses are regulated by diverse host and pathogen effectors and variation in innate and inflammatory immunity mediate downstream effects on adaptive immune responses. Not surprisingly, a significant range in inter-individual immune responses is noted In humans and mammals, especially in the respiratory tract where virus-immune interactions can be protective or pathogenic. We will identify polygenic immune traits which mediate unique and conserved immune responses, testing the hypothesis that the most significant, highly conserved immune pathways will best be identified in genetically diverse populations that model naturally occurring variation. Thus, we employ the Collaborative Cross (CC), a highly diverse, infinitely reproducible, and customizable recombinant inbred (Rl) mouse panel designed to discover polygenic traits that regulate complex phenotypes, like immunity. The CC captures: a) vast host genetic diversity, b) extreme immune phenotypes, and c) polygenic trait regulation of host immune responses to infection. In Project 1, we use the highly tractable SARS-Coronavirus (SARS-CoV) model to probe immune function in the lung. In the CC, SARS-CoV infection manifests in protective or pathogenic immune phenotypes including diffuse alveolar damage, atypical pneumonia, and acute respiratory distress. Importantly, the SARS-CoV model Is supported by: a) robust genetic, biochemical, immunologic, and virologic tools, b) host immune regulated pathogenic outcomes, c) polygenic traits regulating immune pathways, d) virulence genes which modulate immunity, and e) defined components of protective immunity and clearance.
In Aim 1, we will identify genes and expression networks that regulate the kinetics, composition, and magnitude of innate immunity and inflammation in the lung.
In Aim 2, we identify genes and polygenic networks that regulate the kinetics, magnitude, and effector functions of SARS-CoV specific CDS T cells or the kinetics, avidity, and functional breadth of SARS-CoV specific antibody responses.
In aim 3, we validate the role of genes and polymorphic interactions in unique and conserved immune responses, in immune cross talk, in protective or pathologic disease, and across organs, viruses and host species.

Public Health Relevance

We will use the Collaborative Cross, a mouse resource designed to study complex genetic interactions in diverse populations, to identify novel polymorphic genes that regulate immune responses to SARS-CoV and/or other viruses, provide new insights into how interactions between these genes shape immune phenotypes in mice and humans, and generate panels of genetically defined mice for studying how defined sets of polymorphic genes affect immune responses against a variety of pathogens or rather immune stimuli.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI100625-04
Application #
8890752
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
2016-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
4
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Maurizio, Paul L; Ferris, Martin T; Keele, Gregory R et al. (2018) Bayesian Diallel Analysis Reveals Mx1-Dependent and Mx1-Independent Effects on Response to Influenza A Virus in Mice. G3 (Bethesda) 8:427-445
Green, Richard; Ireton, ReneƩ C; Gale Jr, Michael (2018) Interferon-stimulated genes: new platforms and computational approaches. Mamm Genome 29:593-602
Agnihothram, Sudhakar; Menachery, Vineet D; Yount Jr, Boyd L et al. (2018) Development of a Broadly Accessible Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Platform. J Virol 92:
Johnson, Bryan A; Graham, Rachel L; Menachery, Vineet D (2018) Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses. Virology 517:30-37
Gunn, Bronwyn M; Jones, Jennifer E; Shabman, Reed S et al. (2018) Ross River virus envelope glycans contribute to disease through activation of the host complement system. Virology 515:250-260
Kollmus, Heike; Pilzner, Carolin; Leist, Sarah R et al. (2018) Of mice and men: the host response to influenza virus infection. Mamm Genome 29:446-470
Gorman, Matthew J; Caine, Elizabeth A; Zaitsev, Konstantin et al. (2018) An Immunocompetent Mouse Model of Zika Virus Infection. Cell Host Microbe 23:672-685.e6
Baxter, Victoria K; Heise, Mark T (2018) Genetic control of alphavirus pathogenesis. Mamm Genome 29:408-424
Chow, Kwan T; Driscoll, Connor; Loo, Yueh-Ming et al. (2018) IRF5 regulates unique subset of genes in dendritic cells during West Nile virus infection. J Leukoc Biol :
Gralinski, Lisa E; Sheahan, Timothy P; Morrison, Thomas E et al. (2018) Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. MBio 9:

Showing the most recent 10 out of 77 publications