Our laboratory has previously shown that autophagy (ATG) genes play an important role in host defense against viruses and intracellular bactena. Recently, we developed a potent autophagy-inducing peptide (Tat-Beclin 1) which induces autophagy through disruption of Beclin 1/GAPR-1 complex and which has in vitro antiviral and antibacterial activity and improves clinical outcomes in mice infected with chikungunya virus and West Nile virus (Shoji-Kawata et al. Nature 2013). The overall goals of this proiect will be to develop a semioptimized lead compound with broad-spectrum anti-infective activity based on the autophagy-inducing peptide, Tat-Beclin 1, and/or disruption of the interaction between Beclin 1/GAPR-1. and to identify new drugable host targets that upregulate viral autophagy. These goals will be accomplished in four specific aims.
In aim 1, we will use an iterative process involving structure-based design peptide-mutation analysis, and synthetic chemistry to develop a peptide-like molecule with optimized stability, autophagy-inducing activity, and anti-infective activity, and we will also evaluate whether Tat-Beclin 1 has anti-infective activity in animal models of tuberculosis (this project) and S. Typhimurium (Project 2) and T. gondii (Project 3).
In aim 2, we will further characterize the Beclin 1/GAPR-1 interaction and the biological functions of GAPR-1 in autophagy regulation and antimicrobial host defense.
In aim 3, will perform a genome-wide siRNA screen to identify genes that regulate virus-induced autophagy, using Sindbis virus as a model for positive-strand viruses that are potential agents of biothreat, such as chikungunya and West Nile virus, and we will identify the mechanisms of action of such genes and their antiviral roles in mouse models of chikungunya and West Nile virus pathogenesis.
In aim 4, we will evaluate the efficacy of autophagy-inducing small molecule compounds identified in Project 4 in inhibiting chikungunya virus. West Nile virus, and M. tb replication in vitro and in decreasing West Nile virus, chikungunya virus, and M. tb pathogenesis in mice. Thus, by further development of an autophagy-inducing peptide that already has known in vivo activity against West Nile virus and chikungunya virus, combined with a genome-wide screen to identify new host genes that regulate virus-induced autophagy, combined with testing autophagy-inducing small molecule compounds identified in other projects of this CETR for efficacy in the treatment of West Nile virus and chikungunya virus infection, we will use a multi-pronged and collaborative approach to identify candidate autophagy-inducing compounds with broad-spectrum anti-infective activity against viruses and intracellular pathogens

Public Health Relevance

The development of therapeutics that prevent infection by a broad range of pathogens is an urgent and unmet need for drug discovery. The project will use several concurrent approaches to lead to the development of such drugs, focused both on optimizing existing strategies discovered by our laboratory and on discovering new strategies which are designed to upregulate, the broad-spectrum anti-infective host innate immunity pathway called autophagy

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI109725-05
Application #
9628557
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Maric, Maja
Project Start
Project End
Budget Start
2018-03-01
Budget End
2019-02-28
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Thackray, Larissa B; Handley, Scott A; Gorman, Matthew J et al. (2018) Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell Rep 22:3440-3453.e6
Lassen, Kara G; Xavier, Ramnik J (2018) Mechanisms and function of autophagy in intestinal disease. Autophagy 14:216-220
Graham, Daniel B; Luo, Chengwei; O'Connell, Daniel J et al. (2018) Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat Med 24:1762-1772
Yokoyama, Christine C; Baldridge, Megan T; Leung, Daisy W et al. (2018) LysMD3 is a type II membrane protein without an in vivo role in the response to a range of pathogens. J Biol Chem 293:6022-6038
Wilen, Craig B; Lee, Sanghyun; Hsieh, Leon L et al. (2018) Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360:204-208
Deretic, Vojo; Levine, Beth (2018) Autophagy balances inflammation in innate immunity. Autophagy 14:243-251
Orchard, Robert C; Wilen, Craig B; Virgin, Herbert W (2018) Sphingolipid biosynthesis induces a conformational change in the murine norovirus receptor and facilitates viral infection. Nat Microbiol 3:1109-1114
Radke, Joshua B; Carey, Kimberly L; Shaw, Subrata et al. (2018) High Throughput Screen Identifies Interferon ?-Dependent Inhibitors of Toxoplasma gondii Growth. ACS Infect Dis 4:1499-1507
Wein, Marc N; Foretz, Marc; Fisher, David E et al. (2018) Salt-Inducible Kinases: Physiology, Regulation by cAMP, and Therapeutic Potential. Trends Endocrinol Metab 29:723-735
Moretti, Francesca; Bergman, Phil; Dodgson, Stacie et al. (2018) TMEM41B is a novel regulator of autophagy and lipid mobilization. EMBO Rep 19:

Showing the most recent 10 out of 97 publications