Project 2: James Cunningham, M.D. Ebola virus (EboV) is a highly pathogenic enveloped virus that causes outbreaks of zoonotic infection in Africa. The unpredictable onset, ease of transmission, rapid progression of disease, high mortality, and lack of effective vaccine or anti-viral therapy have created a high level of public concern about EboV. EboV are enveloped viruses that enter cells by attachment of envelope glycoprotein GP to cell surface lectins and uptake by macropinocytosis. Virus-containing vesicles fuse with endosomes, and virus particles are transported to lysosomes containing host factors that activate the intrinsic membrane fusion activity of the EboV glycoprotein GP. The goal of this proposal is to identify small molecules that inhibit infection mediated by EboV GP and to use these inhibitors as tools to investigate the virus entry pathway. Previously, a small molecule library was screened using a cell-based assay for infection mediated by the EboV glycoprotein GP. Three compounds have been identified that exhibit nanomolar anti-EboV activity, dynamic structure-activity profiles, absence of cytotoxicity, and evidence of a unique target in cells.
The Specific Aims of this project are to use iterative SAR to enhance the potency and the pharmacokinetic and pharmacokinetic properties of the inhibitors and to develop derivatives to use as probes of the Ebov entry pathway. New methods will be developed to identify the targets of these inhibitors in cells and to determine the role ofthe target in infection. This information will be utilized to determine the mechanism and consequences of inhibitor action and to test the efficacy of the most promising inhibitors in a mouse model of infection. Preliminary studies reveal the target of one ofthe inhibitors as the lysosomal membrane protein Niemann-Pick Cl (NPC1) and demonstrate that the inhibitor interferes with the function of NPC1 as an EboV GP receptor. These findings validate the use of a chemical biology approach for analysis of the EboV entry pathway. To carry out these studies, a team of investigators has been assembled with complementary expertise in organic synthesis, medicinal chemistry, quantitative mass spectrometry, genetic screening for virus host factors, and mouse models of EboV infection in BL4 laboratory at USAMRIID, Ft Detrick, MD.

Public Health Relevance

Ebola virus is a highly pathogenic virus that causes outbreaks of infection in Africa and is a potential bioterrorism agent. The unpredictable onset, ease of transmission, rapid progression of disease, high mortality ,and lack of effective vaccine or anti-viral therapy have created a high level of public concern about Ebola virus. This project will identify new inhibitors of Ebola virus infection, determine their mechanism of action, an evaluate their potential for development into anti-viral drugs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI109740-05
Application #
9631900
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Maric, Maja
Project Start
Project End
Budget Start
2018-03-01
Budget End
2019-02-28
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Harvard Medical School
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
Coulter, Michael E; Dorobantu, Cristina M; Lodewijk, Gerrald A et al. (2018) The ESCRT-III Protein CHMP1A Mediates Secretion of Sonic Hedgehog on a Distinctive Subtype of Extracellular Vesicles. Cell Rep 24:973-986.e8
Lian, Wenlong; Jang, Jaebong; Potisopon, Supanee et al. (2018) Discovery of Immunologically Inspired Small Molecules That Target the Viral Envelope Protein. ACS Infect Dis 4:1395-1406
de Wispelaere, Melissanne; Lian, Wenlong; Potisopon, Supanee et al. (2018) Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein. Cell Chem Biol 25:1006-1016.e8
Chao, Luke H; Jang, Jaebong; Johnson, Adam et al. (2018) How small-molecule inhibitors of dengue-virus infection interfere with viral membrane fusion. Elife 7:
Pitts, Jared D; Li, Pi-Chun; de Wispelaere, Melissanne et al. (2017) Antiviral activity of N-(4-hydroxyphenyl) retinamide (4-HPR) against Zika virus. Antiviral Res 147:124-130
Salgado, Eric N; Upadhyayula, Srigokul; Harrison, Stephen C (2017) Single-particle detection of transcription following rotavirus entry. J Virol :
Raaben, Matthijs; Jae, Lucas T; Herbert, Andrew S et al. (2017) NRP2 and CD63 Are Host Factors for Lujo Virus Cell Entry. Cell Host Microbe 22:688-696.e5
Wang, May K; Lim, Sun-Young; Lee, Soo Mi et al. (2017) Biochemical Basis for Increased Activity of Ebola Glycoprotein in the 2013-16 Epidemic. Cell Host Microbe 21:367-375
Filippakis, Harilaos; Alesi, Nicola; Ogorek, Barbara et al. (2017) Lysosomal regulation of cholesterol homeostasis in tuberous sclerosis complex is mediated via NPC1 and LDL-R. Oncotarget 8:38099-38112
Chou, Yi-Ying; Cuevas, Christian; Carocci, Margot et al. (2016) Identification and Characterization of a Novel Broad-Spectrum Virus Entry Inhibitor. J Virol 90:4494-4510

Showing the most recent 10 out of 25 publications