Human parasites cause some of the most important infectious diseases worldwide (e.g. malaria), and infect millions of individuals each year within the US (e.g. toxoplasma). Despite the availability of several reference sequences for parasite genomes, we have a very limited understanding of the mechanisms by which parasites infect and persist within their human hosts. This project will exploit current high-throughput sequencing technologies and bioinformatics techniques to provide novel insights to parasitic infectious diseases. Our broad objectives are to understand pathogen diversity, evolution, and their interactions with the human host and associated microbiota. These objectives are addressed through three specific aims, applied to two apicomplexan species of major concern in the US {Toxoplasma gondii) and worldwide {Plasmodium falciparum). Particular emphasis is given to the study of host-parasite interactions, through the sequencing of DNA and RNA from both the parasites and their human hosts.
Specific Aim 1 will apply sequence-based analysis of natural and mutant T. gondii strains to determine the worldwide genomic complexity for this species, and permit predictions of host and parasite genes that are involved with specific infection and replication phenotypes.
Specific Aim 2 will apply sequence-based analysis of host-parasite interactions during experimental and natural P. falciparum infections of humans, to identify the genomic and transcriptomic basis of immune profiles that are associated with protection from the symptoms of malaria.
Specific Aim 3 will characterize the composition of bacterial and eukaryotic species in the gut microbiome during the course of infections with P. falciparum to determine the reciprocal effects on microbiome composition and disease progression. Each of the specific aims employs innovative experimental designs and technology development, and is most appropriate for a large-scale program that can generate and process extensive volumes of sequence data. The project addresses important problems that apply to the specific species under study, and to the larger field of parasitic infectious disease. By achieving the objectives of this project, we will provide a model for how future projects could be accomplished for many other pathogens of interest.

Public Health Relevance

Parasitic infections cause a tremendous burden of human disease, mainly in rural areas of low-income countries, but also affecting millions of individuals within the US. A better understanding of the molecular interactions between parasites and their human hosts will promote the development of improved therapeutic options, including novel anti-parasitic drugs and more effective vaccines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI110819-01
Application #
8711782
Study Section
Special Emphasis Panel (ZAI1-EC-M (J1))
Project Start
Project End
Budget Start
2014-04-04
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$208,968
Indirect Cost
$97,815
Name
J. Craig Venter Institute, Inc.
Department
Type
DUNS #
076364392
City
Rockville
State
MD
Country
United States
Zip Code
20850
Becka, Scott A; Zeiser, Elise T; Marshall, Steven H et al. (2018) Sequence heterogeneity of the PenA carbapenemase in clinical isolates of Burkholderia multivorans. Diagn Microbiol Infect Dis 92:253-258
Chan, Agnes P; Choi, Yongwook; Brinkac, Lauren M et al. (2018) Multidrug resistant pathogens respond differently to the presence of co-pathogen, commensal, probiotic and host cells. Sci Rep 8:8656
Oldfield, Lauren M; Fedorova, Nadia; Puri, Vinita et al. (2018) Sequences of Zika Virus Genomes from a Pediatric Cohort in Nicaragua. Genome Announc 6:
Marino, Nicole D; Panas, Michael W; Franco, Magdalena et al. (2018) Identification of a novel protein complex essential for effector translocation across the parasitophorous vacuole membrane of Toxoplasma gondii. PLoS Pathog 14:e1006828
Tan, Yi; Tsan-Yuk Lam, Tommy; Heberlein-Larson, Lea A et al. (2018) Large scale complete genome sequencing and phylodynamic analysis of eastern equine encephalitis virus reveal source-sink transmission dynamics in the United States. J Virol :
Nyaga, Martin M; Tan, Yi; Seheri, Mapaseka L et al. (2018) Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa. Infect Genet Evol 63:79-88
Clarke, Thomas H; Brinkac, Lauren M; Inman, Jason M et al. (2018) PanACEA: a bioinformatics tool for the exploration and visualization of bacterial pan-chromosomes. BMC Bioinformatics 19:246
Ogden, Kristen M; Tan, Yi; Akopov, Asmik et al. (2018) Multiple introductions and antigenic mismatch with vaccines may contribute to increased predominance of G12P[8] rotaviruses in the United States. J Virol :
Ismail, Ashrafali M; Cui, Tiange; Dommaraju, Kalpana et al. (2018) Genomic analysis of a large set of currently-and historically-important human adenovirus pathogens. Emerg Microbes Infect 7:10
Tan, Yi; Pickett, Brett E; Shrivastava, Susmita et al. (2018) Differing epidemiological dynamics of Chikungunya virus in the Americas during the 2014-2015 epidemic. PLoS Negl Trop Dis 12:e0006670

Showing the most recent 10 out of 72 publications