The innate immune recognition of dengue virus infection triggers antiviral immune responses; however, there is little information about how the virus regulates these measures or how these responses affect dengue virus (DENV) disease pathogenesis and immunity. System biology approaches aimed at deciphering the complex interactions between DENV and host genes and pathways require accurate high-throughput measurements and comprehensive datasets and models. The purpose of this HIPC is to take advantage of recent advances in human immune profiling methods to characterize the early states of the human innate immune system following DENV infection and before and after vaccination against this infectious disease. The goal of the Genomics Core is to provide a central knowledge base and resource to define the human immune repertoire and develop predictors of disease and vaccine responses by using high throughput sequencing and bioinformatics that facilitate investigations of human immunity in well-characterized human cohorts. Other HIPC investigators will use this information to derive human immune profiles or signatures for disease in naturally acquired infection with known dengue immune status (Project 1), vaccine responsiveness and human challenge studies (Project 2), or DENV infection ex vivo with DENV strains of different virulence (Project 3). Network analysis of the human immune profiling data will identify pathways and genes for RNAi knockdown to determine how perturbations of the regulatory networks influence host responses during DENV infection. These studies are key to the overall goal of the HIPC to use high-throughput systems biology approaches to create molecular signatures that will define the human immune response profiles that correlate with the outcome of dengue virus infection or vaccination.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI118610-03
Application #
9293235
Study Section
Special Emphasis Panel (ZAI1-LGR-I)
Project Start
Project End
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
3
Fiscal Year
2017
Total Cost
$461,754
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Type
Domestic Higher Education
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Amir, El-Ad David; Guo, Xinzheng V; Mayovska, Oksana et al. (2018) Average Overlap Frequency: A simple metric to evaluate staining quality and community identification in high dimensional mass cytometry experiments. J Immunol Methods 453:20-29
Premkumar, Lakshmanane; Collins, Matthew; Graham, Stephen et al. (2018) Development of Envelope Protein Antigens To Serologically Differentiate Zika Virus Infection from Dengue Virus Infection. J Clin Microbiol 56:
Balmaseda, Angel; Zambrana, José Victor; Collado, Damaris et al. (2018) Comparison of Four Serological Methods and Two Reverse Transcription-PCR Assays for Diagnosis and Surveillance of Zika Virus Infection. J Clin Microbiol 56:
Kalayci, Selim; Gümü?, Zeynep H (2018) Exploring Biological Networks in 3D, Stereoscopic 3D, and Immersive 3D with iCAVE. Curr Protoc Bioinformatics 61:8.27.1-8.27.26
Katzelnick, Leah C; Ben-Shachar, Rotem; Mercado, Juan Carlos et al. (2018) Dynamics and determinants of the force of infection of dengue virus from 1994 to 2015 in Managua, Nicaragua. Proc Natl Acad Sci U S A 115:10762-10767
Mishra, Nischay; Caciula, Adrian; Price, Adam et al. (2018) Diagnosis of Zika Virus Infection by Peptide Array and Enzyme-Linked Immunosorbent Assay. MBio 9:
Janssens, Sylvie; Schotsaert, Michael; Manganaro, Lara et al. (2018) FACS-Mediated Isolation of Neuronal Cell Populations From Virus-Infected Human Embryonic Stem Cell-Derived Cerebral Organoid Cultures. Curr Protoc Stem Cell Biol :e65
Thézé, Julien; Li, Tony; du Plessis, Louis et al. (2018) Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host Microbe 23:855-864.e7
Patil, Veena S; Madrigal, Ariel; Schmiedel, Benjamin J et al. (2018) Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci Immunol 3:
Manganaro, Lara; Hong, Patrick; Hernandez, Matthew M et al. (2018) IL-15 regulates susceptibility of CD4+ T cells to HIV infection. Proc Natl Acad Sci U S A 115:E9659-E9667

Showing the most recent 10 out of 42 publications