Dengue is the most prevalent mosquito-borne viral disease causing disease in humans. Dengue disease may present as a non-specific febrile illness, dengue fever (DF), or as a more severe infection marked by hemorrhage or circulatory failure or shock, dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). There are currently no licensed vaccines or therapeutics for dengue virus (DENV). Our laboratory has optimized and utilized human ex vivo models for virus infections, which have been very useful for elucidating mechanisms of innate immune evasion by DENV in specific cell types. Understanding virus-host interactions during DENV infections and the molecular mechanisms involved in the generation of immune responses is one of the crucial factors that will lead to the development of effective and safe vaccines and therapeutics. This project will analyze immune responses to DENV infections ex vivo using two robust systems of human PBMCs and DCs, which are targets for DENV infection in humans. This controlled system of DENV infection captures early events of the virus-host interaction. We will profile innate immune responses to DENV primary isolates circulating in Nicaragua (Project 1) and DENV vaccine strains (Takeda Vaccines Inc., Project 2). Selected strains will be then used for the in depth characterization of the innate immune response, cellular transcriptome, epigenome and proteome in collaboration with the Genomics (Core B), Proteomics (Core C) and immune monitoring Core (Core D) in PBMCs or DCs upon viral exposure. We will identify host proteins that differentially mediate innate immune responses and impact viral replication with the same DENV isolates and vaccines strains by siRNA screens in DCs. Data will be managed and analyzed by the Data Analysis and Modeling Core (Core E) and the Data Management and Dissemination Core (Core F) to define parameters and build cellular and molecular networks important for innate immunity to DENV. Networks will be subsequently integrated with those generated from in vivo studies in Projects 1 (natural infections) and 2 (vaccine trials). Also, our ex vivo systems will serve to identify sets of genes through global analysis to design targeted assays for in vivo studies in Projects 1 and 2 and to validate the role of specific genes important for innate immunity to DENV infection identified in vivo.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI118610-05
Application #
9720815
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2019-06-01
Budget End
2020-05-31
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Amir, El-Ad David; Guo, Xinzheng V; Mayovska, Oksana et al. (2018) Average Overlap Frequency: A simple metric to evaluate staining quality and community identification in high dimensional mass cytometry experiments. J Immunol Methods 453:20-29
Premkumar, Lakshmanane; Collins, Matthew; Graham, Stephen et al. (2018) Development of Envelope Protein Antigens To Serologically Differentiate Zika Virus Infection from Dengue Virus Infection. J Clin Microbiol 56:
Balmaseda, Angel; Zambrana, José Victor; Collado, Damaris et al. (2018) Comparison of Four Serological Methods and Two Reverse Transcription-PCR Assays for Diagnosis and Surveillance of Zika Virus Infection. J Clin Microbiol 56:
Kalayci, Selim; Gümü?, Zeynep H (2018) Exploring Biological Networks in 3D, Stereoscopic 3D, and Immersive 3D with iCAVE. Curr Protoc Bioinformatics 61:8.27.1-8.27.26
Katzelnick, Leah C; Ben-Shachar, Rotem; Mercado, Juan Carlos et al. (2018) Dynamics and determinants of the force of infection of dengue virus from 1994 to 2015 in Managua, Nicaragua. Proc Natl Acad Sci U S A 115:10762-10767
Mishra, Nischay; Caciula, Adrian; Price, Adam et al. (2018) Diagnosis of Zika Virus Infection by Peptide Array and Enzyme-Linked Immunosorbent Assay. MBio 9:
Janssens, Sylvie; Schotsaert, Michael; Manganaro, Lara et al. (2018) FACS-Mediated Isolation of Neuronal Cell Populations From Virus-Infected Human Embryonic Stem Cell-Derived Cerebral Organoid Cultures. Curr Protoc Stem Cell Biol :e65
Thézé, Julien; Li, Tony; du Plessis, Louis et al. (2018) Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host Microbe 23:855-864.e7
Patil, Veena S; Madrigal, Ariel; Schmiedel, Benjamin J et al. (2018) Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci Immunol 3:
Manganaro, Lara; Hong, Patrick; Hernandez, Matthew M et al. (2018) IL-15 regulates susceptibility of CD4+ T cells to HIV infection. Proc Natl Acad Sci U S A 115:E9659-E9667

Showing the most recent 10 out of 42 publications