The goal of this project is to perform non-randomized clinical studies, seeking to improve the therapeutic ratio of protons by exploiting the potential clinical advantage(s) of the reduced dose bath using optimized intensity modulated protons (IMPT), in clinical sites that we hypothesize will result in reduced non-target radiation dose and normal tissue toxicity. We judge these sites are not yet ready for randomized studies. Optimizing proton RT with scanned beams, delineating and controlling target position, finely determining end-of-range, and robust intensity modulation can improve target dose conformity, maximizing local tumor control. We seek to optimize IMPT using investigational biophysical tools. We will also explore modulation of the LET distribution with scanned protons for radiobiologic advantage in a phase I clinical study in CNS malignancies. This project supports the mission of the NCI to improve the treatment and continuing care of cancer patients.

Public Health Relevance

This research aims to improve radiation treatment for cancer patients by improving our ability to direct the radiation at the tumor to spare adjacent normal tissue by using protons (charged particles) with intensity- modulated proton therapy. This can potentially improve cancer cure rates, reduce side effects, or both, depending on the clinical scenario. With an increasing number of proton centers in the United States and abroad the research in this program project is increasingly important for public health.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program--Cooperative Agreements (U19)
Project #
2U19CA021239-35
Application #
8716844
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (J1))
Project Start
1997-04-01
Project End
2019-08-31
Budget Start
2014-09-25
Budget End
2015-08-31
Support Year
35
Fiscal Year
2014
Total Cost
$215,805
Indirect Cost
$44,938
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Liao, Zhongxing; Simone 2nd, Charles B (2018) Particle therapy in non-small cell lung cancer. Transl Lung Cancer Res 7:141-152
Blanchard, Pierre; Gunn, Gary Brandon; Lin, Alexander et al. (2018) Proton Therapy for Head and Neck Cancers. Semin Radiat Oncol 28:53-63
Chen, Yizheng; Grassberger, Clemens; Li, Junli et al. (2018) Impact of potentially variable RBE in liver proton therapy. Phys Med Biol 63:195001
Geng, Changran; Gates, Drake; Bronk, Lawrence et al. (2018) Physical parameter optimization scheme for radiobiological studies of charged particle therapy. Phys Med 51:13-21
Liao, Zhongxing; Lee, J Jack; Komaki, Ritsuko et al. (2018) Bayesian Adaptive Randomization Trial of Passive Scattering Proton Therapy and Intensity-Modulated Photon Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer. J Clin Oncol 36:1813-1822
Yepes, Pablo; Adair, Antony; Grosshans, David et al. (2018) Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy. Phys Med Biol 63:045003
Unkelbach, Jan; Paganetti, Harald (2018) Robust Proton Treatment Planning: Physical and Biological Optimization. Semin Radiat Oncol 28:88-96
Vassiliev, Oleg N; Kry, Stephen F; Grosshans, David R et al. (2018) Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications. Phys Med Biol 63:055007
Paganetti, Harald (2018) Proton Relative Biological Effectiveness - Uncertainties and Opportunities. Int J Part Ther 5:2-14
Jeter, Melenda D; Gomez, Daniel; Nguyen, Quynh-Nhu et al. (2018) Simultaneous Integrated Boost for Radiation Dose Escalation to the Gross Tumor Volume With Intensity Modulated (Photon) Radiation Therapy or Intensity Modulated Proton Therapy and Concurrent Chemotherapy for Stage II to III Non-Small Cell Lung Cancer: A P Int J Radiat Oncol Biol Phys 100:730-737

Showing the most recent 10 out of 47 publications