Recentadvancesinsingle?celltranscriptomicsindissociatedcellshavepermittedtheunbiasedclassification ofunique,molecularly?definedcelltypesinmanybrainregions.However,linkingthesemolecularly?defined celltypestotheircorrespondingmorphological,physiological,andfunctionalphenotypesremainsamajorchal? lengeinthefield.Wehaveassembledaninterdisciplinaryteamcapableofcombiningandfurtheroptimizing cutting?edgetechnologiesincludingPatch?seq(amethodwedevelopedthatcombineswhole?cellpatch?clamp recordingsandsingle?cellRNAsequencing),multi?photoncalciumimaging,multiplexedfluorescentinsituhy? bridization(MERFISH),andstate?of?artmachinelearningtoaddressthisgapinknowledge.
In aim1, duringthe firsttwoyears,wewillprovideacomprehensivecensusofthecelltypesthatcomprisethemouseprimaryvisual cortexcircuitrybylinkingsinglecellRNA?seq,morphological,andinvitroelectrophysiologicaldata.Duringthe last three years, we will define the cell types of higher order visual areas. In addition, we will characterize a distributednetworkoffivesubcorticalregionsinvolvedinthecontrolofinnatesocialbehaviors,includingthe ventromedialhypothalamicnucleus,medialpreopticnucleus,anteriorhypothalamicnucleus,posteriorbednu? cleus of the stria terminalis, and posterior medial amygdala. By studying both cortical and subcortical brain regions,wewillbeabletocomparesimilaritiesanddifferencesacrossthoseregions,aswellascompareprinci? plesofcelltypeorganizationbetweenevolutionarilyancientsubcorticalandmorerecentlyevolvedcorticalre? gionsofthebrain.
In aim2, wewillstudythefunctionalpropertiesoftranscriptomically?definedcelltypesin thevisualcortexofthemouse(areasV1,LM,PMandAM).Wewillperformmulti?photoncalciumimagingin behavingmiceduringthepresentationofavarietyofvisualstimulitocharacterizeindetailthereceptivefield propertiesoftheseneuronsfollowedbyMERFISHtoidentifythegeneticprofileoftherecordedneurons.We willemploythistobothCrelinesthatlabelknownbroadclassesofneuronsaswellasdenseimagingofcortical populationstoprovideacomplete,specific(i.e.inthesameanimal)characterizationofbothcelltypefunction andmolecularprofiling.Thecombineddatafromthesetwospecificaimspromisetoprovidethemostcomplete understandingofcelltypestodate,includingexpressionprofiles(e.g.ionchannelandreceptorlevels)morphol? ogy,single?cellelectrophysiology,andinvivofunctionalproperties.Themethodsandpipelinesthatwillbeop? timizedinthissectionoftheproposalwillalsolaythefoundationtofurtherapplythesemethodsindifferent partsofthebrainaswellasstudyanimalmodelsofdiseases.

Public Health Relevance

Recent advances in single-cell transcriptomics in dissociated cells have permitted the unbiased classifica- tion of unique, molecularly-defined cell types in many brain regions, however, linking these molecularly- defined cell types to their corresponding morphological, physiological, and functional phenotypes remains a major challenge in the field. We will use cutting-edge technologies including Patch-seq, multi-photon calcium imaging, multiplexed fluorescent in situ hybridization, and state-of-art machine learning to address this gap in knowledge. The combined data promise to provide the most complete understanding of cell types at molecu- lar, structural and functional levels to date, which will lay the foundation to further apply these methods in different parts of the brain as well as study animal models of diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19MH114830-04
Application #
9962169
Study Section
Special Emphasis Panel (ZMH1)
Project Start
Project End
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
4
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Allen Institute
Department
Type
DUNS #
137210949
City
Seattle
State
WA
Country
United States
Zip Code
98109
Mukamel, Eran A; Ngai, John (2018) Perspectives on defining cell types in the brain. Curr Opin Neurobiol 56:61-68
Risso, Davide; Purvis, Liam; Fletcher, Russell B et al. (2018) clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets. PLoS Comput Biol 14:e1006378
Luo, Chongyuan; Hajkova, Petra; Ecker, Joseph R (2018) Dynamic DNA methylation: In the right place at the right time. Science 361:1336-1340
Zeng, Hongkui (2018) Mesoscale connectomics. Curr Opin Neurobiol 50:154-162
Ecker, Joseph R; Geschwind, Daniel H; Kriegstein, Arnold R et al. (2017) The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. Neuron 96:542-557