Precise phenotype information is needed to advance translational cancer research, particularly to unravel the effects of genetic, epigenetic, and systems changes on tumor behavior and responsiveness. Examples of phenotypic variables in cancer include: tumor morphology (e.g. histopathologic diagnosis), co-morbid conditions (e.g. associated immune disease), laboratory findings (e.g. gene amplification status), specific tumor behaviors (e.g. metastasis) and response to treatment (e.g. effect of a chemotherapeutic agent on tumor). Current models for correlating EMR data with ?omics data largely ignore the clinical text, which remains one of the most important sources of phenotype information for cancer patients. Unlocking the value of clinical text has the potential to enable new insights about cancer initiation, progression, metastasis, and response to treatment. We propose further collaboration to enhance the DeepPhe platform with new methods for cancer deep phenotyping. Several aims propose investigation of biomedical information extraction where there has been little or no previous work (e.g. clinical genomic). Visualization of extracted data, usability of the software, and dissemination are also emphasized. A diverse set of oncology studies led by accomplished translational investigators in Breast Cancer, Melanoma, Ovarian Cancer, Colorectal Cancer and Diffuse Large B-cell Lymphoma will demonstrate the utility of the software. These labs will contribute phenotype variables for extraction, test utility and usability of the software, and provide the setting for an extrinsic evaluation. The proposed research bridges novel methods to automate cancer deep phenotype extraction from clinical text with emerging standards in phenotype knowledge representation and NLP. This work is highly aligned with recent calls in the scientific literature to advance scalable and robust methods of extracting and representing phenotypes for precision medicine and translational research.

Public Health Relevance

We propose research to enhance the ability of researchers to utilize data from unstructured medical records in their translational cancer research programs. The proposed software platform has the ability to enhance the health of the public by contributing new methods for advancing cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
1U24CA248010-01A1
Application #
10058470
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Mariotto, Angela B
Project Start
2020-09-24
Project End
2025-08-31
Budget Start
2020-09-24
Budget End
2021-08-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Boston Children's Hospital
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115