The proposed Mouse Metabolic Physiology Center (MMPC) is an interdisciplinary program that will expand the already extensive capacity at Vanderbilt to uniquely characterize the phenotype or genetically altered murine models of diabetes and related disorders. Moreover, it will provide a vehicle for making these novel resources available to investigators nationally. The MMPC will be self-contained in that it will have the capacity to perform husbandry and experimentation of a mouse line, analysis of tissue or blood samples from those mice, and management of data generated as a result of Center procedures. The MMPC will consist of five cores. The Administrative Core will provide scientific, financial, and administrative leadership, interact with program officials at the NIH, and administer the Pilot and Feasibility (P&F) Program. The Administrative Core will also support the role of the Center's Data Management Resource in developing and managing the Center mouse phenotyping database in a way that allows controlled access to investigators and other national centers. The Animal Care and Welfare Core will perform daily mouse care, mouse breeding, other national centers. The Animal Care and Welfare Core will perform daily mouse care, mouse breeding, collection of blood and tissues, and genotyping. The Metabolic Pathophysiology, the Vascular Pathology, and the Analytical Resources Core Laboratories will perform the phenotyping procedures. Pathophysiology, and the Analytical Resources Core Laboratories will perform the phenotyping procedures. Pathophysiology, and the Analytical Resources Core Laboratories will perform the phenotyping procedures. Services provided by cores will involve unique experimental procedures and analytical techniques scaled to the mouse that are generally not feasible for individual investigators to establish in their own laboratories. Vanderbilt is a leading site for research in diabetes and metabolism that is unified by the nation's first and consequently oldest federally funded diabetes center. Establishment of the MMPC will allow the expertise in diabetes and related disorders at Vanderbilt to be merged with developed and evolving resources to study the mouse.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK059637-04
Application #
6769964
Study Section
Special Emphasis Panel (ZDK1-GRB-6 (J1))
Program Officer
Abraham, Kristin M
Project Start
2001-07-15
Project End
2006-06-30
Budget Start
2004-07-01
Budget End
2005-06-30
Support Year
4
Fiscal Year
2004
Total Cost
$1,062,693
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Physiology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Williams, Ian M; Valenzuela, Francisco A; Kahl, Steven D et al. (2018) Insulin exits skeletal muscle capillaries by fluid-phase transport. J Clin Invest 128:699-714
Hughey, Curtis C; Trefts, Elijah; Bracy, Deanna P et al. (2018) Glycine N-methyltransferase deletion in mice diverts carbon flux from gluconeogenesis to pathways that utilize excess methionine cycle intermediates. J Biol Chem 293:11944-11954
Kook, Seunghyi; Qi, Aidong; Wang, Ping et al. (2018) Gene-edited MLE-15 Cells as a Model for the Hermansky-Pudlak Syndromes. Am J Respir Cell Mol Biol 58:566-574
Yao, Lina; Seaton, Sarah Craven; Ndousse-Fetter, Sula et al. (2018) A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 7:
Babaev, Vladimir R; Huang, Jiansheng; Ding, Lei et al. (2018) Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Front Immunol 9:215
Pollins, Alonda C; Boyer, Richard B; Nussenbaum, Marlieke et al. (2018) Comparing Processed Nerve Allografts and Assessing Their Capacity to Retain and Release Nerve Growth Factor. Ann Plast Surg 81:198-202
Harris, Nicholas A; Isaac, Austin T; Günther, Anne et al. (2018) Dorsal BNST ?2A-Adrenergic Receptors Produce HCN-Dependent Excitatory Actions That Initiate Anxiogenic Behaviors. J Neurosci 38:8922-8942
Fensterheim, Benjamin A; Young, Jamey D; Luan, Liming et al. (2018) The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism. J Immunol 200:3777-3789
Ehrlicher, Sarah E; Stierwalt, Harrison D; Newsom, Sean A et al. (2018) Skeletal muscle autophagy remains responsive to hyperinsulinemia and hyperglycemia at higher plasma insulin concentrations in insulin-resistant mice. Physiol Rep 6:e13810
Mani, Bharath K; Castorena, Carlos M; Osborne-Lawrence, Sherri et al. (2018) Ghrelin mediates exercise endurance and the feeding response post-exercise. Mol Metab 9:114-130

Showing the most recent 10 out of 661 publications