The Animal Health and Welfare Core (AHWC) is responsible for receipt, certification, and husbandry of mice that are sent to Vanderbilt for the purpose of metabolic phenotyping. The AHWC is the interface between the Vanderbilt Division of Animal Care and the VMMPC. The responsibilites and services ofthis core are critical for the VMMPC to perform well-controlled experiments in non-stressed, healthy mice. The overall objective of the core is to facilitate the use of mice in diabetes, obesity and related research, ensure compliance and implement and maintain the health and colony numbers appropriate to the rate of center usage. Specifically the core is responsible for 1) receipt and documentation of incoming mice, 2) assignment and oversight of quarantine procedures, 3) provision of day-to-day husbandry, 4) provision of veterinary care and support, 5) performance of pathological assessments, and 6) implementation and maintenance of any specific dietary requirements.

Public Health Relevance

The quality of data obtained from mouse phenotyping is determined in large part by the health ofthe mouse. This core is critical to ensure mice are healthy so that our experiments are accurate and reproducible.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
2U24DK059637-11
Application #
8204243
Study Section
Special Emphasis Panel (ZDK1-GRB-S (M1))
Project Start
Project End
Budget Start
2011-09-16
Budget End
2012-05-31
Support Year
11
Fiscal Year
2011
Total Cost
$18,547
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Cooke, Allison L; Morris, Jamie; Melchior, John T et al. (2018) A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. J Lipid Res 59:1244-1255
Moore, Mary Courtney; Kelley, David E; Camacho, Raul C et al. (2018) Superior Glycemic Control With a Glucose-Responsive Insulin Analog: Hepatic and Nonhepatic Impacts. Diabetes 67:1173-1181
Funkhouser-Jones, Lisa J; van Opstal, Edward J; Sharma, Ananya et al. (2018) The Maternal Effect Gene Wds Controls Wolbachia Titer in Nasonia. Curr Biol 28:1692-1702.e6
Wasserman, David H; Wang, Thomas J; Brown, Nancy J (2018) The Vasculature in Prediabetes. Circ Res 122:1135-1150
Huynh, Frank K; Hu, Xiaoke; Lin, Zhihong et al. (2018) Loss of sirtuin 4 leads to elevated glucose- and leucine-stimulated insulin levels and accelerated age-induced insulin resistance in multiple murine genetic backgrounds. J Inherit Metab Dis 41:59-72
Dutter, Brendan F; Ender, Anna; Sulikowski, Gary A et al. (2018) Rhodol-based thallium sensors for cellular imaging of potassium channel activity. Org Biomol Chem 16:5575-5579
Herrick, Mary K; Favela, Kristin M; Simerly, Richard B et al. (2018) Attenuation of diet-induced hypothalamic inflammation following bariatric surgery in female mice. Mol Med 24:56
Lewis Jr, James S; Shelton, Jeremy; Kuhs, Krystle Lang et al. (2018) p16 Immunohistochemistry in Oropharyngeal Squamous Cell Carcinoma Using the E6H4 Antibody Clone: A Technical Method Study for Optimal Dilution. Head Neck Pathol 12:440-447
Hunter, Roger W; Hughey, Curtis C; Lantier, Louise et al. (2018) Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat Med 24:1395-1406
Perez, Katia M; Curley, Kathleen L; Slaughter, James C et al. (2018) Glucose Homeostasis and Energy Balance in Children With Pseudohypoparathyroidism. J Clin Endocrinol Metab 103:4265-4274

Showing the most recent 10 out of 661 publications