The purpose of the Cardiovascular Pathophysiology and Complications Core (CPCC) is to provide comprehensive and reproducible screening for cardiovascular disease and complications of diabetes in genetic mouse models. Many of the mouse phenotyping tests used by this Core are largely modeled after and directly translatable to tests used to assess patients with diabetes. Other procedures are reliant on novel surgical techniques for providing stimuli to the cardiovascular system or for kidney transplantation. Core services include assessment of a) cardiac morphology and function;b) vascular regulation;c) exercise capacity and metabolic function;d) circulating markers;e) models of myocardial injury and repair;and f) vascular atherosclerosis. The range of phenotyping tests performed by the CPCC allows for thorough investigation ofthe presence, correlation with and modification or amelioration of diabetic complications associated with specific genetic manipulations in the mouse.

Public Health Relevance

Cardiovascular disease, including atherosclerosis and lipid abnormalities comprise the major morbidity and mortality in diabetes. The Cardiovascular Pathophysiology and Complications Core has a range of unique phenotyping tests for genetic mouse models that are designed to better understand the devastating complications of diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK059637-12
Application #
8379713
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
12
Fiscal Year
2012
Total Cost
$197,524
Indirect Cost
$70,906
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
May-Zhang, Aaron A; Deal, Karen K; Southard-Smith, E Michelle (2018) Optimization of Laser-Capture Microdissection for the Isolation of Enteric Ganglia from Fresh-Frozen Human Tissue. J Vis Exp :
Laroumanie, Fanny; Korneva, Arina; Bersi, Matthew R et al. (2018) LNK deficiency promotes acute aortic dissection and rupture. JCI Insight 3:
Chen, Xi; Ayala, Iriscilla; Shannon, Chris et al. (2018) The Diabetes Gene and Wnt Pathway Effector TCF7L2 Regulates Adipocyte Development and Function. Diabetes 67:554-568
Mi, Deborah J; Dixit, Shilpy; Warner, Timothy A et al. (2018) Altered glutamate clearance in ascorbate deficient mice increases seizure susceptibility and contributes to cognitive impairment in APP/PSEN1 mice. Neurobiol Aging 71:241-254
Williams, Ian M; Valenzuela, Francisco A; Kahl, Steven D et al. (2018) Insulin exits skeletal muscle capillaries by fluid-phase transport. J Clin Invest 128:699-714
Hughey, Curtis C; Trefts, Elijah; Bracy, Deanna P et al. (2018) Glycine N-methyltransferase deletion in mice diverts carbon flux from gluconeogenesis to pathways that utilize excess methionine cycle intermediates. J Biol Chem 293:11944-11954
Kook, Seunghyi; Qi, Aidong; Wang, Ping et al. (2018) Gene-edited MLE-15 Cells as a Model for the Hermansky-Pudlak Syndromes. Am J Respir Cell Mol Biol 58:566-574
Yao, Lina; Seaton, Sarah Craven; Ndousse-Fetter, Sula et al. (2018) A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 7:
Babaev, Vladimir R; Huang, Jiansheng; Ding, Lei et al. (2018) Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Front Immunol 9:215
Pollins, Alonda C; Boyer, Richard B; Nussenbaum, Marlieke et al. (2018) Comparing Processed Nerve Allografts and Assessing Their Capacity to Retain and Release Nerve Growth Factor. Ann Plast Surg 81:198-202

Showing the most recent 10 out of 661 publications