The Analytical Resources Core is composed of three subcores: 1) Hormone Assay and Analytical Services;2) Lipids and Lipoproteins;and 3) Mouse Pathology. These subcores share resources with others in the Vanderbilt DRTC where they have served to streamline research activities, produce cost-effective lines of experimentation, foster collaborative enterprises, and provide alternative outlets to scientists reaching the technical limits of their own laboratories. The services offered by each subcore are unique in their application to the mouse, and great effort has been made to establish assay specificity and scale down sample size to accommodate samples from this species. The Core provides space, equipment, and personnel for sample analyses and method development. Investigators pay a fee-for-service that covers the cost of reagents, supplies, a percentage of personnel salary, and pro-rated service contracts.

Public Health Relevance

The Analytical Resources Core provides chemical analyses and pathology services for biological specimens obtained from genetic mouse models of diabetes and metabolic disease. The services provided by this Core are essential to understanding the specific genes that underlie these conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK059637-14
Application #
8708036
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
14
Fiscal Year
2014
Total Cost
$217,041
Indirect Cost
$77,912
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Hunter, Roger W; Hughey, Curtis C; Lantier, Louise et al. (2018) Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat Med 24:1395-1406
Perez, Katia M; Curley, Kathleen L; Slaughter, James C et al. (2018) Glucose Homeostasis and Energy Balance in Children With Pseudohypoparathyroidism. J Clin Endocrinol Metab 103:4265-4274
Creecy, Amy; Uppuganti, Sasidhar; Unal, Mustafa et al. (2018) Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age. Bone 110:204-214
Babaev, Vladimir R; Ding, Lei; Zhang, Youmin et al. (2018) Loss of 2 Akt (Protein Kinase B) Isoforms in Hematopoietic Cells Diminished Monocyte and Macrophage Survival and Reduces Atherosclerosis in Ldl Receptor-Null Mice. Arterioscler Thromb Vasc Biol :ATVBAHA118312206
Zhang, Ming-Zhi; Wang, Suwan; Wang, Yinqiu et al. (2018) Renal Medullary Interstitial COX-2 (Cyclooxygenase-2) Is Essential in Preventing Salt-Sensitive Hypertension and Maintaining Renal Inner Medulla/Papilla Structural Integrity. Hypertension 72:1172-1179
Kjøbsted, Rasmus; Hingst, Janne R; Fentz, Joachim et al. (2018) AMPK in skeletal muscle function and metabolism. FASEB J 32:1741-1777
Santos Guasch, Gabriela L; Beeler, J Scott; Marshall, Clayton B et al. (2018) p73 Is Required for Ovarian Follicle Development and Regulates a Gene Network Involved in Cell-to-Cell Adhesion. iScience 8:236-249
Russart, Kathryn L G; Huk, Danielle; Nelson, Randy J et al. (2018) Elevated aggressive behavior in male mice with thyroid-specific Prkar1a and global Epac1 gene deletion. Horm Behav 98:121-129
Kovtun, Oleg; Tomlinson, Ian D; Bailey, Danielle M et al. (2018) Single Quantum Dot Tracking Illuminates Neuroscience at the Nanoscale. Chem Phys Lett 706:741-752
Coppola, Jennifer J; Disney, Anita A (2018) Most calbindin-immunoreactive neurons, but few calretinin-immunoreactive neurons, express the m1 acetylcholine receptor in the middle temporal visual area of the macaque monkey. Brain Behav 8:e01071

Showing the most recent 10 out of 661 publications