Precise phenotyping depends significantly on the quality of animal subjects. Stable housing and husbandry minimize the influence of exogenous factors that could distort phenotyping results. Additionally, mice submitted to the UMass MMPC share space with cohorts from microbiologically diverse sources. They, as well as mice housed in resident colonies, must be protected against potential cross-infection by adventitious agents. The Animal Core operates under the supervision of Dr. Jerald Silverman as the Core Director, who oversees the animal care facility of UMass Medical School. The Humanized Mouse Cell Transplantation and Assessment sub-Core is directed by Dr. Dale Greiner who will offer the humanized mice and elegant techniques to assess in vivo function of transplanted human islets and stem cell-derived ?-cells in immunodeficient mice. The sub-Core will perform standardized assessment procedures that will provide quantifiable metrics for the transplanted human islets or stem cell-derived ?-cells. The Animal Core provides facilities and services relevant to these priorities under the following specific aims: (1) to provide stable, biocontainment housing, husbandry and health care for mice (2) to provide a dedicated animal facility for housing (AS2-1043 and 1042) and on-site phenotyping procedures (AS2-1043A) with additional phenotyping instruments, (3) to assess the microbiological profile of each cohort and provides the Center Director with interpretation and advice regarding the results, and (4) to provide to the users of the phenotyping service, at the discretion of the Center Director, results and advice on the health status of submitted mice. The goal of the Animal Core is to support the operation of UMass MMPC with issues pertinent to animal care and quality of phenotyping mice.

Project Start
Project End
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
6
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
Owino, Sharon; Sánchez-Bretaño, Aida; Tchio, Cynthia et al. (2018) Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. J Pineal Res 64:
Shen, Yuefei; Cohen, Jessica L; Nicoloro, Sarah M et al. (2018) CRISPR-delivery particles targeting nuclear receptor-interacting protein 1 (Nrip1) in adipose cells to enhance energy expenditure. J Biol Chem 293:17291-17305
Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan et al. (2018) Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity. Cell Rep 23:3286-3299
Huynh, Frank K; Hu, Xiaoke; Lin, Zhihong et al. (2018) Loss of sirtuin 4 leads to elevated glucose- and leucine-stimulated insulin levels and accelerated age-induced insulin resistance in multiple murine genetic backgrounds. J Inherit Metab Dis 41:59-72
Kim, Jong Hun; Lee, Eunjung; Friedline, Randall H et al. (2018) Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity. FASEB J 32:2292-2304
Hirako, Isabella Cristina; Assis, Patrícia Aparecida; Hojo-Souza, Natália Satchiko et al. (2018) Daily Rhythms of TNF? Expression and Food Intake Regulate Synchrony of Plasmodium Stages with the Host Circadian Cycle. Cell Host Microbe 23:796-808.e6
Caracciolo, Valentina; Young, Jeanette; Gonzales, Donna et al. (2018) Myeloid-specific deletion of Zfp36 protects against insulin resistance and fatty liver in diet-induced obese mice. Am J Physiol Endocrinol Metab 315:E676-E693
Huang, Li-Hao; Melton, Elaina M; Li, Haibo et al. (2018) Myeloid-specific Acat1 ablation attenuates inflammatory responses in macrophages, improves insulin sensitivity, and suppresses diet-induced obesity. Am J Physiol Endocrinol Metab 315:E340-E356
Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S et al. (2017) Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance. Cell Rep 20:655-667
Russo, Lucia; Muturi, Harrison T; Ghadieh, Hilda E et al. (2017) Liver-specific reconstitution of CEACAM1 reverses the metabolic abnormalities caused by its global deletion in male mice. Diabetologia 60:2463-2474

Showing the most recent 10 out of 37 publications