NERCE PROJECT 9: An improved targeted vaccine strategy against anthrax -Ronald K. Taylor,Ph.D.The goal of this proposal is to initiate the development of a novel, targeted vaccine technology againstpathogens associated with bioterrorism and those that are responsible for emerging infectious diseases.Extremely rapid and potent immune responses are elicited by vaccines that target antigens specifically toprofessional antigen-presenting cells (APCs). In addition to inducing rapid and robust immune responses,targeted vaccines are potentially safer, easily administered, and require very low doses that leads to reducedcost.This project is based on a partnership between academic investigators and industry. Antigens will betargeted to dendritic cells (DCs) and other APCs using a monoclonal antibody (mAb) specific to theendocytic receptors, DEC-205 and mannose receptor (MR). These antibodies are rapidly internalized andgain access to the antigen presenting pathways. Antigens delivered in this way elicit potent antibody andcytotoxic T lymphocyte responses. Recombinant antigens will be chemically crosslinked and/or geneticallyfused to the mAbs using available human anti-DEC-205 and anti-MR gene fusion vectors.In the past year, we have fused recombinant protective antigen (rPA) of anthrax to anti-DEC-205 and testedthe ability of the fusion to elicit humoral immune responses in mice. We are proceeding to apply the samestrategy using anti-MR to develop a targeted vaccine for cholera, using recombinant TcpA from Vibriocholerae.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
3U54AI057159-05S1
Application #
7645359
Study Section
Special Emphasis Panel (ZAI1-NBS-M (M2))
Project Start
2008-03-01
Project End
2009-02-28
Budget Start
2008-03-01
Budget End
2009-02-28
Support Year
5
Fiscal Year
2008
Total Cost
$255,409
Indirect Cost
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
de Wispelaere, Melissanne; Lian, Wenlong; Potisopon, Supanee et al. (2018) Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein. Cell Chem Biol 25:1006-1016.e8
Huang, Nai-Jia; Pishesha, Novalia; Mukherjee, Jean et al. (2017) Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun 8:423
Mertins, Philipp; Przybylski, Dariusz; Yosef, Nir et al. (2017) An Integrative Framework Reveals Signaling-to-Transcription Events in Toll-like Receptor Signaling. Cell Rep 19:2853-2866
Nair, Dhanalakshmi R; Chen, Ji; Monteiro, João M et al. (2017) A quinolinol-based small molecule with anti-MRSA activity that targets bacterial membrane and promotes fermentative metabolism. J Antibiot (Tokyo) 70:1009-1019
Choo, Min-Kyung; Sano, Yasuyo; Kim, Changhoon et al. (2017) TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. J Exp Med 214:1297-1311
de Wispelaere, Mélissanne; Carocci, Margot; Liang, Yanke et al. (2017) Discovery of host-targeted covalent inhibitors of dengue virus. Antiviral Res 139:171-179
Umetsu, Dale T (2017) Mechanisms by which obesity impacts upon asthma. Thorax 72:174-177
Zheng, Huiqing; Colvin, Christopher J; Johnson, Benjamin K et al. (2017) Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat Chem Biol 13:218-225
Coulson, Garry B; Johnson, Benjamin K; Zheng, Huiqing et al. (2017) Targeting Mycobacterium tuberculosis Sensitivity to Thiol Stress at Acidic pH Kills the Bacterium and Potentiates Antibiotics. Cell Chem Biol 24:993-1004.e4
Chiaraviglio, Lucius; Kang, Yoon-Suk; Kirby, James E (2016) High Throughput, Real-time, Dual-readout Testing of Intracellular Antimicrobial Activity and Eukaryotic Cell Cytotoxicity. J Vis Exp :

Showing the most recent 10 out of 417 publications