Immunotherapy approaches for cancer can result in occasional long term remissions of advanced metastatic cancers resistant to conventional modes of therapy. Development of more effective approaches requires a detailed analysis of the immunobiology of these antitumor responses. However, existing technologies for the study of immune responses have proven to have limited ability to fully characterize this complex process, manily due to the fact that the cells that orchestrate these responses, the tumor antigen-specific CD8+ cytotoxic T lymphocytes (CTL) are rare cells in peripheral circulation. We propose to develop a modular technology to allow for the design, production and validation of functional components for the enumeration of tumor-specific CD8+ CTL using limiting samples, eventually allowing to quantitate and functionally characterize tumor-infiltrating CD8+ CTL.
In Aim 1 we propose to use capture MHC tetramers loaded with tumor antigens (the specific ligands for CD8+ CTL) to develop murine and human micro-lmmunochip (uIC) modules with digitally controlled, individually accessible microfluidic chambers to capture, sort, quantitate and incubate tumor-specific T-cells.
In Aim 2 we propose to develop individual modules for quantifying surface, intracellular and secreted proteins, from very small numbers of anti-tumor specific T cells (even single cells), and a module for quantifying mRNA signatures from small numbers of cells (in collaboration with Fluidigm).
In Aim 3 the different modules will be integrated and tested, first using defined populations of tumor-specific CD8+ CTL, followed by samples of increasing complexity obtained from mouse models of immunotherapy, and eventually human tumor-specific CD8+ CTL obtained from patients participating in clinical trials of cancer immunotherapy being conducted at UCLA.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA119347-05
Application #
7918203
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
5
Fiscal Year
2009
Total Cost
$639,099
Indirect Cost
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Bunck, David N; Atsavapranee, Beatriz; Museth, Anna K et al. (2018) Modulating the Folding Landscape of Superoxide Dismutase?1 with Targeted Molecular Binders. Angew Chem Int Ed Engl 57:6212-6215
Poovathingal, Suresh Kumar; Kravchenko-Balasha, Nataly; Shin, Young Shik et al. (2016) Critical Points in Tumorigenesis: A Carcinogen-Initiated Phase Transition Analyzed via Single-Cell Proteomics. Small 12:1425-31
Masui, Kenta; Shibata, Noriyuki; Cavenee, Webster K et al. (2016) mTORC2 activity in brain cancer: Extracellular nutrients are required to maintain oncogenic signaling. Bioessays 38:839-44
Masui, Kenta; Cavenee, Webster K; Mischel, Paul S (2016) Cancer metabolism as a central driving force of glioma pathogenesis. Brain Tumor Pathol 33:161-8
Das, Samir; Nag, Arundhati; Liang, JingXin et al. (2015) A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands. Angew Chem Int Ed Engl 54:13219-24
Zuckerman, Jonathan E; Gale, Aaron; Wu, Peiwen et al. (2015) siRNA delivery to the glomerular mesangium using polycationic cyclodextrin nanoparticles containing siRNA. Nucleic Acid Ther 25:53-64
Masui, Kenta; Cavenee, Webster K; Mischel, Paul S (2015) mTORC2 and Metabolic Reprogramming in GBM: at the Interface of Genetics and Environment. Brain Pathol 25:755-9
Deyle, Kaycie M; Farrow, Blake; Qiao Hee, Ying et al. (2015) A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1. Nat Chem 7:455-62
Hu-Lieskovan, Siwen; Homet Moreno, Blanca; Ribas, Antoni (2015) Excluding T Cells: Is ?-Catenin the Full Story? Cancer Cell 27:749-50
Heath, James R (2015) Nanotechnologies for biomedical science and translational medicine. Proc Natl Acad Sci U S A 112:14436-43

Showing the most recent 10 out of 135 publications