Cancer originates in fundamental genetic alterations in tumor cells, leading to changes in protein expression? and function, finally resulting in characteristic """"""""signatures"""""""" in the serum and on tumor cell surfaces. Powerful? proteomics efforts are identifying sets of biomarkers that are characteristic of a tumor's innate biology, which? will be important for prediction and monitoring of response to therapy. Since cancer development is a? complex process requiring mutation and altered expression of multiple genes, full determination of the? biological state and treatment susceptibility of a tumor will require assessment of numerous biomarkers in? vivo. To address this issue, we turn to quantum dots (Qdots), which are tiny fluorescent nanocrystals that? can be produced with a spectrum of defined emission wavelengths, for generation of multiplex detectors for? biomarkers.
In Aim 1, antibodies specific for well characterized biomarkers in prostate cancer and? lymphoma, will be engineered and coupled to near-infrared Qdots developed in Project 5. Biophysical,? biochemical, and biological properties of these tumor-specific Qdots.
In Aim 2, we will? extend the platform by using cell-surface markers in prostate cancer identified by Project 4, to produce? recombinant targets and select novel antibodies by phage display for coupling to Qdots for multiplex imaging? of multiple markers.
Aim 3 will focus on biological modification of Qdots for targeting the alpha-v-beta3 integrin? expressed on tumors and tumor neovasculature, using Arg-Gly-Asp peptides that bind specifically to this? protein. Finally, in Aim 4 a strategy for amplifying Qdot signals will utilize coupling to peptides that will? enhance cellular uptake, when their activity is unmasked by tumor-specific proteases. Throughout the? project period, tumor-targeting Qdots will be provided for in vivo imaging in mouse therapy? models of human cancer, to validate their utility. Tumor-specific Qdots will be invaluable reagents in cell? biology and preclinical models, for in vivo, real time monitoring of tumor cell activity and function.? Furthermore, the targeting strategies developed here can be extended to in vivo delivery of other classes of? nanoparticles for alternative modes of detection or for therapy. A sophisticated understanding of the? differences between tumor and normal tissues in living organisms will advance our understanding of how to? detect and treat cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA119367-03
Application #
7664993
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
3
Fiscal Year
2008
Total Cost
$459,429
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Shah, Preyas N; Lin, Tiras Y; Aanei, Ioana L et al. (2018) Extravasation of Brownian Spheroidal Nanoparticles through Vascular Pores. Biophys J 115:1103-1115
Kani, Kian; Garri, Carolina; Tiemann, Katrin et al. (2017) JUN-Mediated Downregulation of EGFR Signaling Is Associated with Resistance to Gefitinib in EGFR-mutant NSCLC Cell Lines. Mol Cancer Ther 16:1645-1657
Antaris, Alexander L; Chen, Hao; Diao, Shuo et al. (2017) A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun 8:15269
Smith, Bryan Ronain; Gambhir, Sanjiv Sam (2017) Nanomaterials for In Vivo Imaging. Chem Rev 117:901-986
Shou, Kangquan; Qu, Chunrong; Sun, Yao et al. (2017) Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe. Adv Funct Mater 27:
Feng, Yi; Zhu, Shoujun; Antaris, Alexander L et al. (2017) Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem Sci 8:3703-3711
Willmann, Jürgen K; Bonomo, Lorenzo; Carla Testa, Antonia et al. (2017) Ultrasound Molecular Imaging With BR55 in Patients With Breast and Ovarian Lesions: First-in-Human Results. J Clin Oncol 35:2133-2140
Antaris, Alexander L; Chen, Hao; Cheng, Kai et al. (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15:235-42
Pu, Kanyi; Chattopadhyay, Niladri; Rao, Jianghong (2016) Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J Control Release 240:312-322
Zhang, Ruiping; Cheng, Kai; Antaris, Alexander L et al. (2016) Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies. Biomaterials 103:265-277

Showing the most recent 10 out of 228 publications