Cancer cells have mutations that alter when they will grow and die. The cells acquire these mutations through DNA damage. Normally, when a cell experiences DNA damage, DNA repair proteins are recruited to correct the damaged or mutated DNA. If the damage is not corrected, a cell death pathway is activated that kills the cell. However, mistakes in the DNA damage response can occur, resulting in the survival of cells with mutated DNA that can give rise to cancer. People who are born with mutations in genes involved in DNA repair are predisposed to developing cancer and many people not born with these mutations who develop cancer have been found to have acquired mutations in DNA repair genes in their tumors. To study how cells repair DNA damage, we use mouse B cells as a model system. To generate antibodies that recognize and eliminate pathogens, B cells are genetically programmed to mutate and delete antibody coding genes. The B cells carefully coordinate their DNA damage and DNA repair pathways to avoid triggering a cell death pathway. ATM (ataxia telangiectasia mutated) and MSH2 (MutS homologue 2) are proteins that are essential for two distinct DNA repair pathways. Mice engineered to lack either ATM or MSH2 display defects in antibody production and have a similar cancer predisposition as people born with mutations in these DNA repair genes. However, mice that lack both ATM and MSH2 are not viable (unpublished data). We hypothesize that the combined loss of ATM and MSH2 causes the accumulation of genomic DNA damage that prevents mouse development. We propose experiments to characterize the mechanism by which ATM and MSH2 cooperatively regulate genome stability and experiments to determine if these unique molecular pathways can be exploited therapeutically in cancer. The research will be led by Dr. Vuong and Dr. Chaudhuri at The City College of New York and Memorial Sloan-Kettering Cancer Center, respectively. Dr. Vuong, a former trainee of Dr. Chaudhuri, will supervise CCNY students in the proposed research, which will enhance the pipeline of underrepresented minorities trained in cancer research. The completion of the proposed research will improve the competitiveness of future grant applications from Dr. Vuong, who is a new investigator.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA132378-12
Application #
10021559
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2008-09-26
Project End
2024-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
12
Fiscal Year
2020
Total Cost
Indirect Cost
Name
City College of New York
Department
Type
DUNS #
603503991
City
New York
State
NY
Country
United States
Zip Code
10036
Nicolas, Laura; Cols, Montserrat; Choi, Jee Eun et al. (2018) Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination. F1000Res 7:458
Juarez, Michelle T; Kenet, Chloe M (2018) Translating Research as an Approach to Enhance Science Engagement. Int J Environ Res Public Health 15:
Zheng, Simin; Kusnadi, Anthony; Choi, Jee Eun et al. (2018) NME proteins regulate class switch recombination. FEBS Lett :
Palaniappan, Latha; Garg, Arun; Enas, Enas et al. (2018) South Asian Cardiovascular Disease & Cancer Risk: Genetics & Pathophysiology. J Community Health 43:1100-1114
Srimathveeravalli, Govindarajan; Abdel-Atti, Dalya; PĂ©rez-Medina, Carlos et al. (2018) Reversible Electroporation-Mediated Liposomal Doxorubicin Delivery to Tumors Can Be Monitored With 89Zr-Labeled Reporter Nanoparticles. Mol Imaging 17:1536012117749726
Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon et al. (2018) Finding influential nodes for integration in brain networks using optimal percolation theory. Nat Commun 9:2274
Kodama, Hiroshi; Vroomen, Laurien G; Ueshima, Eisuke et al. (2018) Catheter-based endobronchial electroporation is feasible for the focal treatment of peribronchial tumors. J Thorac Cardiovasc Surg 155:2150-2159.e3
Bylund, Carma L; Weiss, Elisa S; Michaels, Margo et al. (2017) Primary care physicians' attitudes and beliefs about cancer clinical trials. Clin Trials 14:518-525
Giordano, James; Bikson, Marom; Kappenman, Emily S et al. (2017) Mechanisms and Effects of Transcranial Direct Current Stimulation. Dose Response 15:1559325816685467
Morone, Flaviano; Roth, Kevin; Min, Byungjoon et al. (2017) Model of brain activation predicts the neural collective influence map of the brain. Proc Natl Acad Sci U S A 114:3849-3854

Showing the most recent 10 out of 106 publications