Understanding and controlling the transition from dysplasic growth to neoplasia in the gastrointestinal tract requires coordinated evaluation of the molecular and anatomic markers of disease using both specific biochemical probes to recognize alterations in cellular physiology and cell surface markers, and established technologies that can detect and interrogate both structure and function. To improve detection of Gl cancers we propose to perform collaborative translational research in optical imaging and spectroscopy using multimodal platforms for the detection of early neoplastic lesions arising from the Gl epithelium. We have established an integrated Specialized Research Resource Center comprised of investigators from Stanford University, Vanderbilt University, University of Florida and University of California, Davis. The overarching aim of this program is develop a consensus process and methodology based on optics and ultrasound to optimize detection of early molecular markers of disease by examining molecular markers in the context of ultrastructural changes. We will use fluorescence contrast agents for functional analyses and both optics and ultrasound for assessing anatomic changes. Aided by wide-field fluorescence endoscopy and ultrasound, fiberbased optical probes will be used to analyze the molecular signatures of disease. The engineering components of this program are aimed at systems integration using established white light/fluorescence endoscopy and ultrasound systems and state-of-the-art miniaturized sensors for high resolution/high sensitivity detection of molecular probes directed at markers of cancer. The probe chemistries are well-established and based on existing targets. Probes include peptides, selected for binding to dysplastic epithelium, and compounds directed at COX-2 as an intracellular marker of malignancy. The program provides an infrastructure to support subprojects that are aimed at translating well-developed tools and techniques into the clinic. In each subproject, a strong foundation of established technologies supports innovative approaches to improve integration and enhance early detection. The clinical team consists of endoscopists with a track record of translational research that will evaluate the integrated tools and reagents in patients. We have a strong pathology team comprised of pathologists with expertise in optical imaging and spectroscopy to facilitate validation with histopathological standards. The major project in this program has four specific aims that are each addressed in a multidisciplinary and directed approach. These include: i) validation of molecular markers of Gl cancer as targets for imaging and therapy, ii) advancing molecular probes and integrated instrument combinations for imaging and therapy of Gl cancer, iii) optimization of probe-therapy combinations based on validated molecular markers, and iv) clinically evaluate instrument and probe combinations.
These aims are supported by two task specific projects and 5 cores with oversight by an executive committee

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA136465-02
Application #
7690731
Study Section
Special Emphasis Panel (ZCA1-SRRB-9 (O1))
Program Officer
Nordstrom, Robert J
Project Start
2008-09-22
Project End
2013-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
2
Fiscal Year
2009
Total Cost
$1,200,000
Indirect Cost
Name
Stanford University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Uddin, Md Jashim; Moore, Chauca E; Crews, Brenda C et al. (2016) Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization. J Biomed Opt 21:90503
Uddin, Md Jashim; Werfel, Thomas A; Crews, Brenda C et al. (2016) Fluorocoxib A loaded nanoparticles enable targeted visualization of cyclooxygenase-2 in inflammation and cancer. Biomaterials 92:71-80
Sensarn, Steven; Zavaleta, Cristina L; Segal, Ehud et al. (2016) A Clinical Wide-Field Fluorescence Endoscopic Device for Molecular Imaging Demonstrating Cathepsin Protease Activity in Colon Cancer. Mol Imaging Biol 18:820-829
Templeton, Zachary S; Bachmann, Michael H; Alluri, Rajiv V et al. (2015) Methods for culturing human femur tissue explants to study breast cancer cell colonization of the metastatic niche. J Vis Exp :
Uddin, Md Jashim; Crews, Brenda C; Ghebreselasie, Kebreab et al. (2015) Targeted imaging of cancer by fluorocoxib C, a near-infrared cyclooxygenase-2 probe. J Biomed Opt 20:50502
Rogalla, Stephan; Contag, Christopher H (2015) Early Cancer Detection at the Epithelial Surface. Cancer J 21:179-87
Garai, Ellis; Sensarn, Steven; Zavaleta, Cristina L et al. (2015) A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS One 10:e0123185
Ra, Hyejun; González-González, Emilio; Uddin, Md Jashim et al. (2015) Detection of non-melanoma skin cancer by in vivo fluorescence imaging with fluorocoxib A. Neoplasia 17:201-7
Contag, Christopher H; Lie, Wen-Rong; Bammer, Marie C et al. (2014) Monitoring dynamic interactions between breast cancer cells and human bone tissue in a co-culture model. Mol Imaging Biol 16:158-66
Garai, Ellis; Sensarn, Steven; Zavaleta, Cristina L et al. (2013) High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device. J Biomed Opt 18:096008

Showing the most recent 10 out of 33 publications