The purpose ofthis Shared Resource is to provide specialized equipment and techniques for using sequencing methods to analyze gene expression, DNA methylation states, microRNA signatures, and gene translocation/duplication in the genome. This information will be used to better understand novel cancer pathways at the single cell level, including the rapid cell evolution response that allows some cancer cells to sun/ive chemotherapy. This Shared Resource will expand upon current methodology of sequencing a few cells, bringing high throughput sequencing and other services and expertise to each Project. The proposed procedure involves optimization of all steps, from isolation and lysis of, ultimately, a single cell, to whole genome amplification and analysis.

Public Health Relevance

This Shared Resource will expand upon current methodology of sequencing a few cells, bringing high throughput sequencing and other services and expertise to each Project. The proposed procedure involves optimization of all steps, from isolation and lysis of, ultimately, a single cell, to whole genome amplification and analysis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143803-05
Application #
8535653
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$120,915
Indirect Cost
Name
Princeton University
Department
Type
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
van der Toom, Emma E; Axelrod, Haley D; de la Rosette, Jean J et al. (2018) Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nat Rev Urol :
Valkenburg, Kenneth C; de Groot, Amber E; Pienta, Kenneth J (2018) Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 15:366-381
Chalfin, Heather J; Glavaris, Stephanie A; Malihi, Paymaneh D et al. (2018) Prostate Cancer Disseminated Tumor Cells are Rarely Detected in the Bone Marrow of Patients with Localized Disease Undergoing Radical Prostatectomy across Multiple Rare Cell Detection Platforms. J Urol 199:1494-1501
Chalfin, Heather J; Kates, Max; van der Toom, Emma E et al. (2018) Characterization of Urothelial Cancer Circulating Tumor Cells with a Novel Selection-Free Method. Urology 115:82-86
de Groot, Amber E; Pienta, Kenneth J (2018) Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. Oncotarget 9:20908-20927
Wu, Amy; Liao, David; Kirilin, Vlamimir et al. (2018) Cancer dormancy and criticality from a game theory perspective. Cancer Converg 2:1
Maley, Carlo C; Aktipis, Athena; Graham, Trevor A et al. (2017) Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer 17:605-619
Piotrowski-Daspit, Alexandra S; Simi, Allison K; Pang, Mei-Fong et al. (2017) A 3D Culture Model to Study How Fluid Pressure and Flow Affect the Behavior of Aggregates of Epithelial Cells. Methods Mol Biol 1501:245-257
Parsana, Princy; Amend, Sarah R; Hernandez, James et al. (2017) Identifying global expression patterns and key regulators in epithelial to mesenchymal transition through multi-study integration. BMC Cancer 17:447
Decker, A M; Cackowski, F C; Jung, Y et al. (2017) Biochemical Changes in the Niche Following Tumor Cell Invasion. J Cell Biochem 118:1956-1964

Showing the most recent 10 out of 105 publications