Targeting Ligand Core One major challenge in cancer nanotechnology is how to selectively deliver functional nanoparticles to cancer cells. The overall thrust of the Targeting Ligand Core is to provide novel targeting ligands that can be used to direct nanoparticles to particular cancer cell types for projects 1, 2 and 3. Two powerful combinatorial library technologies will be used to generate the desired targeting ligands, including single domain antibodies (SDAs), single domain antibody mimics (SDAMs), and 2'-F/2'-OMe RNA aptamers. The use of two different technologies for protein-based and nucleic acid-based biomolecules, respectively, will ensure that the desired targeting ligands will be rapidly identified and made available to the Projects. Specifically, we will create monomeric (milestone 1) and multimeric (milestone 2) SDAs and SDAMS with high affinity and specificity for EGFR, mesothelin, and other promising cancer biomarkers. We will also use a combination of cell-SELEX and conventional SELEX to generate 2'-F and 2'-OMe RNA aptamers that can specifically bind to EGFR or mesothelin expressing lung cancer cells (milestone 3). The resulting targeting ligands will incorporate functional groups such as Cys or Lys at site(s) away from the target-binding region, to facilitate site-specific conjugation with various nanoparticles that are used in Projects 1, 2, and 3.
Targeted therapy has the potential of reducing toxicity of chemotherapy for cancer management. Nanoparticles targeted to primary and metastatic cancer may improve the standard of care and quality of life for cancer patients.
Showing the most recent 10 out of 190 publications