PROJECT TITLE: Multifunctional Nanoassemblies for Ligand-Directed Imaging and Therapy of Endocrine Pancreatic Tumors PROJECT SUMMARY: The development of tools for the targeted delivery of Imaging-probes and therapeufic agents has become the focus of intense efforts in the context of many human diseases. The in vivo screening method in which phage can be selected from engineered combinatorial peptide libraries for their ability to target specific vascular beds has uncovered a vascular address system that allows specific angiogenesis-related targeting to blood vessels in cancer. This phage display-based targeting Is expanded by the direct-assembly of gold and nanoporous silicon nanoparticles onto phage for nanomedical applications. Through exploiting the nanodimensions of the phage particle as a molecular network we generated biologically active nanoassemblies (NAs) with concomitant unique and tunable chemical and physical properties. These properties include near-infrared (NIR) radiation conversion to heat, enhancement of fluorescent signals, NIR surface enhanced Raman scattering (SERS) and the ability to conjugate and incorporate therapies or imaging-tracers. This tuning capability combined with the programmable tissue targefing affords the Integrafion of multiple funcfionalities into a single NA and serves as a complementary and non-mutually exclusive tool among different applicafions, including chemotherapy targeting and molecular imaging. Project 4 aims to develop the ligand-directed Si particles- phage- Au particles NAs as novel systems for targeted imaging and therapy in endocrine pancreatic tumors. These efforts will be translated into wide-ranging clinical applications.
Showing the most recent 10 out of 332 publications