The management, analysis, and sharing of data are particularly important in fields such as cancer nanomedicine involving researchers from many disciplines and with multiple constituencies. The overall goal of the Bioinformatics and Data Sharing Core is to develop and apply computational methods to the management, analysis, and sharing of data arising from research in the Center that will advance the overall mission of the Center.
Specific Aims Aim 1. To provide a biostatistics resource for the Center research projects.
Aim 2. To provide mechanisms for effective data sharing and management.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151838-02
Application #
8320763
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
2
Fiscal Year
2011
Total Cost
$107,099
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Russell, Luisa M; Hultz, Margot; Searson, Peter C (2018) Leakage kinetics of the liposomal chemotherapeutic agent Doxil: The role of dissolution, protonation, and passive transport, and implications for mechanism of action. J Control Release 269:171-176
Woodard, Lauren E; Dennis, Cindi L; Borchers, Julie A et al. (2018) Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality. Sci Rep 8:12706
Pisanic 2nd, Thomas R; Athamanolap, Pornpat; Wang, Tza-Huei (2017) Defining, distinguishing and detecting the contribution of heterogeneous methylation to cancer heterogeneity. Semin Cell Dev Biol 64:5-17
Liu, Guanshu; Ray Banerjee, Sangeeta; Yang, Xing et al. (2017) A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nat Biomed Eng 1:977-982
Huang, Xinglu; Chisholm, Jane; Zhuang, Jie et al. (2017) Protein nanocages that penetrate airway mucus and tumor tissue. Proc Natl Acad Sci U S A 114:E6595-E6602
Dawidczyk, Charlene M; Russell, Luisa M; Hultz, Margot et al. (2017) Tumor accumulation of liposomal doxorubicin in three murine models: Optimizing delivery efficiency. Nanomedicine 13:1637-1644
Wu, Juan; Qu, Wei; Williford, John-Michael et al. (2017) Improved siRNA delivery efficiency via solvent-induced condensation of micellar nanoparticles. Nanotechnology 28:204002
Schneider, Craig S; Xu, Qingguo; Boylan, Nicholas J et al. (2017) Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci Adv 3:e1601556
Banerjee, Sangeeta R; Foss, Catherine A; Horhota, Allen et al. (2017) 111In- and IRDye800CW-Labeled PLA-PEG Nanoparticle for Imaging Prostate-Specific Membrane Antigen-Expressing Tissues. Biomacromolecules 18:201-209
Shin, Soo Hyun; Kadayakkara, Deepak K; Bulte, Jeff W M (2017) In Vivo (19)F MR Imaging Cell Tracking of Inflammatory Macrophages and Site-specific Development of Colitis-associated Dysplasia. Radiology 282:194-201

Showing the most recent 10 out of 123 publications