The goal of this project is to develop new diagnostic technology for detection and molecular analysis of cancer cells, especially circulating tumor cells. Our approach will be based on the previously developed DMR (diagnostic magnetic resonance) system that combines a miniaturized NMR probe with targeted magnetic nanoparticles for detection and molecular profiling of cancer cells. The system measures the transverse relaxation rate of water molecules in biological samples in which target cells of interest are labeled with magnetic nanoparticles. In preliminary study, we have detected a few cancer cells in fine needle aspirates, profiled the expression of cellular markers, and measured the pathway inhibition in small numbers of cancer cells. To further advance the DMR technology for molecular and cellular sensing of CTC, we propose three aims: 1) we will synthesize and further develop a new class of magnetic nanoparticles with high magnetic moments and optimize their chemical, biological properties for CTC labeling;2) we will implement a new DMR chip that can separate CTC from whole blood, measure multiple cancer markers in parallel, and sense the magnetic moments of individual cancer cells; 3) we will evaluate the clinical utility of the developed system using human samples, particularly detecting cancers outlined in the RFA (e.g. ovarian cancer, pancreatic cancer, glioma). Technology, materials and processes developed and optimized in this project will also be useful for Project 4 (implantable NMR based sensors), Projects 1 and 2 (targeting cancer cell populations) and Project 5 (novel hybrid nanomaterials).

Public Health Relevance

This proposal aims at optimizing, validating and further developing the most advanced magnetic nanotechnology for cellular analyses. The development and testing of a sensitive, reliable and robust platform for CTC detection, isolation and analysis has the potential to revolutionize cancer prevention and treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151884-05
Application #
8722464
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$395,177
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Bartelt, Alexander; Widenmaier, Scott B; Schlein, Christian et al. (2018) Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nat Med 24:292-303
Lim, Jong-Min; Cai, Truong; Mandaric, Stefan et al. (2018) Drug loading augmentation in polymeric nanoparticles using a coaxial turbulent jet mixer: Yong investigator perspective. J Colloid Interface Sci 538:45-50
Lo, Justin H; Hao, Liangliang; Muzumdar, Mandar D et al. (2018) iRGD-guided Tumor-penetrating Nanocomplexes for Therapeutic siRNA Delivery to Pancreatic Cancer. Mol Cancer Ther 17:2377-2388
Chertok, Beata; Langer, Robert (2018) Circulating Magnetic Microbubbles for Localized Real-Time Control of Drug Delivery by Ultrasonography-Guided Magnetic Targeting and Ultrasound. Theranostics 8:341-357
Bertrand, Nicolas; Grenier, Philippe; Mahmoudi, Morteza et al. (2017) Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 8:777
Behzadi, Shahed; Serpooshan, Vahid; Tao, Wei et al. (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46:4218-4244
Mou, Haiwei; Smith, Jordan L; Peng, Lingtao et al. (2017) CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol 18:108
Doloff, Joshua C; Veiseh, Omid; Vegas, Arturo J et al. (2017) Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat Mater 16:671-680
Song, Chun-Qing; Li, Yingxiang; Mou, Haiwei et al. (2017) Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice. Gastroenterology 152:1161-1173.e1
Yin, Hao; Song, Chun-Qing; Suresh, Sneha et al. (2017) Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 35:1179-1187

Showing the most recent 10 out of 170 publications