? Project 2 Triple negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, characterized by significant intratumor heterogeneity, limited treatment options, and poor patient outcome. The inability to effectively treat TNBC is thought to be in part due to its heterogeneity, as cells are highly plastic and able to respond rapidly to therapeutic insults to steer into drug resistant states. One aspect that is likely to strongly influence TNBC plasticity, heterogeneity, and response to therapy is the microenvironment (ME) in which cells reside. Interactions with extracellular matrix proteins or soluble factors like growth factors and cytokines can profoundly change phenotypic properties of TNBC cells, and mounting evidence suggests that such ME factors also influence response to therapy. We hypothesize that the ME impacts therapeutic response of TNBC, and that consideration of signals from the ME in treatment decisions are likely to lead to improved therapeutic control and patient outcomes. We propose to couple experimental assessment of TNBC response to targeted therapeutics in the presence of defined combinatorial ME perturbations (MEPs) with concomitant expression profiling and computational approaches to define underlying pathway signatures to identify vulnerabilities in residual cancer cells that could be exploited for therapeutic benefit. This will be accomplished in three Aims.
In Aim 1, we will utilize a novel technology known as microenvironment microarrays (MEMA), which allow for the rational interrogation of thousands of unique ME for effects on cellular phenotypes in a single assay, to identify MEPs that confer resistance to six targeted therapeutics in TNBC cell lines and primary patient derived xenograft (PDX) samples.
In Aim 2, we will perform expression profiling by RNA-Seq at fixed time points on TNBC cells grown in the presence of resistance conferring MEPs plus therapeutic and use computational approaches to identify underlying reduced dimensionality network signatures (PREdic-tors of CEllular Phenotypes to guide Therapeutic Strategies, PRECEPTS) that are altered as a result of interactions of cells with MEP and drug. These altered PRECEPTS signatures represent candidates for therapeutic intervention, and will be tested using drug combinations in an attempt to overcome ME-mediated resistance.
In Aim 3, we will perform dynamic imaging and expression profiling of the response of TNBC cells to resistance conferring MEPs plus drug and identify PRECEPTS signatures that are dynamically altered. Such PRECEPTS signatures represent potential transition vulnerabilities that could be targeted for therapeutic intervention, which we will test experimentally using drug combination treatments of TNBC cells. These approaches will be closely coordinated with those of Projects 1 and 3 in the use of common cell lines, drugs, and reagents and to maximize the information that we derive from the experiments. This approach should enable the discovery of new drug combinations that could be deployed clinically to improve outcome in TNBC patients with primary and disseminated disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA209988-04
Application #
9964683
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
4
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Oregon Health and Science University
Department
Type
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Gray, Elliot; Mitchell, Elizabeth; Jindal, Sonali et al. (2018) A METHOD FOR QUANTIFICATION OF CALPONIN EXPRESSION IN MYOEPITHELIAL CELLS IN IMMUNOHISTOCHEMICAL IMAGES OF DUCTAL CARCINOMA IN SITU. Proc IEEE Int Symp Biomed Imaging 2018:796-799
Davis, Ryan J; Gönen, Mehmet; Margineantu, Daciana H et al. (2018) Pan-cancer transcriptional signatures predictive of oncogenic mutations reveal that Fbw7 regulates cancer cell oxidative metabolism. Proc Natl Acad Sci U S A 115:5462-5467
Burlingame, Erik A; Margolin, Adam A; Gray, Joe W et al. (2018) SHIFT: speedy histopathological-to-immunofluorescent translation of whole slide images using conditional generative adversarial networks. Proc SPIE Int Soc Opt Eng 10581:
Chang, Young Hwan; Heo, You Jeong; Cho, Junhun et al. (2018) Computational measurement of tumor immune microenvironment in gastric adenocarcinomas. Sci Rep 8:13887
Risom, Tyler; Langer, Ellen M; Chapman, Margaret P et al. (2018) Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. Nat Commun 9:3815
Su, Yulong; Pelz, Carl; Huang, Tao et al. (2018) Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes Dev 32:1398-1419
Archer, Tenley C; Ehrenberger, Tobias; Mundt, Filip et al. (2018) Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 34:396-410.e8
Chang, Young Hwan; Thibault, Guillaume; Johnson, Brett et al. (2017) Integrative Analysis on Histopathological Image for Identifying Cellular Heterogeneity. Proc SPIE Int Soc Opt Eng 10140:
Azimi, Vahid; Chang, Young Hwan; Thibault, Guillaume et al. (2017) BREAST CANCER HISTOPATHOLOGY IMAGE ANALYSIS PIPELINE FOR TUMOR PURITY ESTIMATION. Proc IEEE Int Symp Biomed Imaging 2017:1137-1140
Tsujikawa, Takahiro; Kumar, Sushil; Borkar, Rohan N et al. (2017) Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis. Cell Rep 19:203-217