The overall goal of the Proteomics Initiative is to use mass spectrometry based proteomic methods to expand the current migration knowledge database by examining phosphorylation site utilization of proteins that regulate cell motility, by further developing methods for measuring differential phosphorylation of those proteins, and by using quantitative methods to assess positional and kinetic variation in phosphorylation site utilization in migration-related proteins. In addition, the Initiative will extend these proteomic methods to provide positional cartography of the proteins present in protein complexes formed by known migration-related proteins and protein products of novel migration genes identified in the unbiased screens of the Gene Discovery Initiative. These goals are enabled by several pivotal developments in technology, analysis, and methodology carried out during the first phase of funding. The Initiative focuses on two inter-related themes: 1. Phosphoproteomics of migration related proteins and 2. Positional proteomics of migration-related protein complexes and their phoshorylations.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54GM064346-10
Application #
8121481
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
2014-07-31
Budget Start
2010-08-01
Budget End
2013-07-31
Support Year
10
Fiscal Year
2010
Total Cost
$148,296
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Hu, Guiqing; Taylor, Dianne W; Liu, Jun et al. (2018) Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts. J Struct Biol 201:199-209
Kubow, Kristopher E; Shuklis, Victoria D; Sales, Dominic J et al. (2017) Contact guidance persists under myosin inhibition due to the local alignment of adhesions and individual protrusions. Sci Rep 7:14380
Gallegos, Lisa Leon; Ng, Mei Rosa; Sowa, Mathew E et al. (2016) A protein interaction map for cell-cell adhesion regulators identifies DUSP23 as a novel phosphatase for ?-catenin. Sci Rep 6:27114
Al-Dimassi, Saleh; Salloum, Gilbert; Saykali, Bechara et al. (2016) Targeting the MAP kinase pathway in astrocytoma cells using a recombinant anthrax lethal toxin as a way to inhibit cell motility and invasion. Int J Oncol 48:1913-20
Juanes-Garcia, Alba; Chapman, Jessica R; Aguilar-Cuenca, Rocio et al. (2015) A regulatory motif in nonmuscle myosin II-B regulates its role in migratory front-back polarity. J Cell Biol 209:23-32
Gao, Runchi; Zhao, Siwei; Jiang, Xupin et al. (2015) A large-scale screen reveals genes that mediate electrotaxis in Dictyostelium discoideum. Sci Signal 8:ra50
Dai, Aguang; Ye, Feng; Taylor, Dianne W et al. (2015) The Structure of a Full-length Membrane-embedded Integrin Bound to a Physiological Ligand. J Biol Chem 290:27168-75
Hanna, Samer; Khalil, Bassem; Nasrallah, Anita et al. (2014) StarD13 is a tumor suppressor in breast cancer that regulates cell motility and invasion. Int J Oncol 44:1499-511
Itano, Michelle S; Graus, Matthew S; Pehlke, Carolyn et al. (2014) Super-resolution imaging of C-type lectin spatial rearrangement within the dendritic cell plasma membrane at fungal microbe contact sites. Front Phys 2:
Wong, Ming-Ching; Kennedy, William P; Schwarzbauer, Jean E (2014) Transcriptionally regulated cell adhesion network dictates distal tip cell directionality. Dev Dyn 243:999-1010

Showing the most recent 10 out of 368 publications