This is a proposal for a multi-institutional MIDAS Center of Excellence called the Center for Statistics and Quantitative Infectious Diseases (CSQUID). The mission the Center is to provide national and international leadership. The lead institution is the Fred Hutchinson Cancer Research Center (FHCRC). Other participating institutions are the University of Florida, Northeastern University, University of Michigan, Emory University, University of Washington (UW), University of Georgia, and Duke University. The proposal includes four synergistic research projects (RP) that will develop cutting-edge methodologies applied to solving epidemiologic, immunologic and evolutionary problems important for public health policy in influenza, dengue, polio, TB, and other infectious agents: RP1: Modeling, Spatial, Statistics (Lead: I. Longini, U Florida); RP2: Dynamic Inference (Lead: P. Rohani, U Michigan); RP 3: Understanding transmission with integrated genetic and epidemiologic inference (Co-Leads: E. Kenah, U Florida and T. Bedford, FHCRC); RP 4: Dynamics and Evolution of Influenza Strain Variation (Lead: R. Antia, Emory U). The Software Development and Core Facilities (Lead: A. Vespignani, Northeastern U) will provide leadership in software development, access, and communication. The Policy Studies (Lead: J. Koopman, U Michigan) will provide leadership in communication of our research results to policy makers, as well as conducting novel research into policy making. The Training, Outreach, and Diversity Plans include ongoing training of 9 postdoctoral fellows and 5.25 predoctoral research assistants each year, support for participants in the Summer Institute for Statistics and Modeling in Infectious Diseases (UW) and ongoing Research Experience for Undergraduates programs at two institutions, among others. All participating institutions and the Center are committed to increasing diversity at all levels. Center-wide activities include Career Development Awards for junior faculty, annual workshops and symposia, outside speakers, and participation in the MIDAS Network meetings. Scientific leadership will be provided by the Center Director, a Leadership Committee, an external Scientific Advisory Board as well as the MIDAS Steering Committee.

Public Health Relevance

This multi-institutional MIDAS Center of Excellence provides a multi-disciplinary approach to computational, statistical, and mathematical modeling of important infectious diseases. The research is motivated by multi-scale problems such as immunologic, epidemiologic, and environmental drivers of the spread of infectious diseases with the goal of understanding and communicating the implications for public health policy.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54GM111274-04
Application #
9307941
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Janes, Daniel E
Project Start
2014-09-12
Project End
2019-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
4
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Claywell, Brian C; Dinh, Vu; Fourment, Mathieu et al. (2018) A Surrogate Function for One-Dimensional Phylogenetic Likelihoods. Mol Biol Evol 35:242-246
Sun, Kaiyuan; Zhang, Qian; Pastore-Piontti, Ana et al. (2018) Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015-2016 ZIKV epidemic. BMC Med 16:195
Antia, Alice; Ahmed, Hasan; Handel, Andreas et al. (2018) Heterogeneity and longevity of antibody memory to viruses and vaccines. PLoS Biol 16:e2006601
Fourment, Mathieu; Claywell, Brian C; Dinh, Vu et al. (2018) Effective Online Bayesian Phylogenetics via Sequential Monte Carlo with Guided Proposals. Syst Biol 67:490-502
Zarnitsyna, Veronika I; Bulusheva, Irina; Handel, Andreas et al. (2018) Intermediate levels of vaccination coverage may minimize seasonal influenza outbreaks. PLoS One 13:e0199674
Ben-Shachar, Rotem; Koelle, Katia (2018) Transmission-clearance trade-offs indicate that dengue virulence evolution depends on epidemiological context. Nat Commun 9:2355
Dinh, Vu; Darling, Aaron E; Matsen Iv, Frederick A (2018) Online Bayesian Phylogenetic Inference: Theoretical Foundations via Sequential Monte Carlo. Syst Biol 67:503-517
Bisanzio, Donal; Dzul-Manzanilla, Felipe; Gomez-Dantés, Hector et al. (2018) Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Negl Trop Dis 12:e0006298
Tsang, Tim K; Chen, Tian-Mu; Longini Jr, Ira M et al. (2018) Transmissibility of Norovirus in Urban Versus Rural Households in a Large Community Outbreak in China. Epidemiology 29:675-683
Pavía-Ruz, Norma; Barrera-Fuentes, Gloria Abigail; Villanueva-Jorge, Salha et al. (2018) Dengue seroprevalence in a cohort of schoolchildren and their siblings in Yucatan, Mexico (2015-2016). PLoS Negl Trop Dis 12:e0006748

Showing the most recent 10 out of 134 publications