Normal reproductive function requires the precise orchestration of hormonal regulation at the hypothalamic, pituitary, and gonadal levels. Within the anterior pituitary, the gonadotrope serves as the control center for integration of hormonal signals, producing luteinizing hormone (LH) and follicle-stimulating hormone to regulate reproduction. This cell responds to pulses of gonadotropin-releasing hormone (GnRH) from the hypothalamus through the GnRH receptor, to endocrine and autocrine activin and follistatin through activin receptors, and to steroid hormone feedback from the gonads. In Research Project I,. Our focus will be the cellular and molecular mechanisms of GnRH and activin regulation of LH and GnRH receptor gene expression in the gonadotrope. Our model system is the mouse, due to the facile manipulation s of the genome attainable by transgenic technology and the ability to exploit our immortal mouse pituitary gonadotrope cell lines that express both LH subunits, activin B, follistatin, and activin, GnRH, and steroid receptors. In the first two aims, these cell lines will be used to investigate the molecular basis of hormonal regulation in the gonadotrope. We have demonstrated that constant GnRH or its second messengers will down regulate, and short-term or pulsatile GnRH will induce, the LHBeta subunit gene in the LbetaT cells.
In Specific Aim 1, we will determine the signaling pathways and their transcriptional targets for long-term repression, and short-term and pulsatile induction of the LHBeta gene, and the mechanism for induction of the Alpha-subunit gene by GnRH. Activin sensitizes the gonadotrope to GnRH by inducing the GnRH receptor mRNA, while follistatin counteracts this response. We have mapped the sequences responsive to activin/follistatin regulation in the mouse GnRH receptor gene and demonstrated that activin treatment induces, and follistatin represses, the activity of a nuclear DNA-binding protein.
In Specific Aim 2 we will investigate the induction of the GnRH receptor gene and the repression of the alpha-subunit gene by activin. The mouse alpha-subunit gene is regulated by GnRH in alpha T3 cells through an Ets binding site.
In Specific Aim 3, we will address the role of MAPKinase signaling through Ets proteins in GnRH action in transgenic mice. In addition, we will investigate the physiological role of activin signaling exclusively in the gonadotrope in transgenic mice.

Project Start
1999-04-01
Project End
2000-03-31
Budget Start
Budget End
Support Year
20
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Fernandez, Marina O; Hsueh, Katherine; Park, Hyun Tae et al. (2017) Astrocyte-Specific Deletion of Peroxisome-Proliferator Activated Receptor-? Impairs Glucose Metabolism and Estrous Cycling in Female Mice. J Endocr Soc 1:1332-1350
Fernandez, Marina O; Sharma, Shweta; Kim, Sun et al. (2017) Obese Neuronal PPAR? Knockout Mice Are Leptin Sensitive but Show Impaired Glucose Tolerance and Fertility. Endocrinology 158:121-133
Yamada-Nomoto, Kaori; Yoshino, Osamu; Akiyama, Ikumi et al. (2017) PAI-1 in granulosa cells is suppressed directly by statin and indirectly by suppressing TGF-? and TNF-? in mononuclear cells by insulin-sensitizing drugs. Am J Reprod Immunol 78:
Takahashi, Nozomi; Harada, Miyuki; Hirota, Yasushi et al. (2017) Activation of Endoplasmic Reticulum Stress in Granulosa Cells from Patients with Polycystic Ovary Syndrome Contributes to Ovarian Fibrosis. Sci Rep 7:10824
Tang, Kechun; Pasqua, Teresa; Biswas, Angshuman et al. (2017) Muscle injury, impaired muscle function and insulin resistance in Chromogranin A-knockout mice. J Endocrinol 232:137-153
Homer, Michael V; Rosencrantz, Marcus A; Shayya, Rana F et al. (2017) The effect of estradiol on granulosa cell responses to FSH in women with polycystic ovary syndrome. Reprod Biol Endocrinol 15:13
Hoffmann, Hanne M; Trang, Crystal; Gong, Ping et al. (2016) Deletion of Vax1 from Gonadotropin-Releasing Hormone (GnRH) Neurons Abolishes GnRH Expression and Leads to Hypogonadism and Infertility. J Neurosci 36:3506-18
Kelley, Scott T; Skarra, Danalea V; Rivera, Alissa J et al. (2016) The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome. PLoS One 11:e0146509
Baeza-Raja, Bernat; Sachs, Benjamin D; Li, Pingping et al. (2016) p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Rep 14:255-68
Hoffmann, Hanne M; Mellon, Pamela L (2016) A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance. Neurosci Commun (Houst) 2:

Showing the most recent 10 out of 258 publications