Project III: Selective Progesterone Receptor Modulators (SPRMs) represent a new class of progesterone receptor (PR) ligands that range from full PR antagonists to compounds with mixed agonist/antagonist activities on various progesterone target tissues in vivo. Due to diverse effects on the PR, specific PRMs are being investigated for multiple clinical applications in reproductive health care. Potential clinical applications of SPRMs include emergency contraception, long-term estrogen-free contraception and post-menopausal hormone therapy, and treatments for myomas, endometriosis and hormone-dependent tumors. The proposed studies combine molecular modeling, translational, and clinical studies to further investigate the clinical safety of CDB-2914 and characterize its effects at a cellular level on hormone target tissues.
Aim 1 : Establish and characterize responses of normal human mammary epithelial cells (HMEC) using primary culture models to: a) Determine characteristics of cell cycle kinetics after short and long term exposure to CDB-2914, in the presence of E2 and/or P4;b) Determine whether a proliferating population of stem and progenitor cells can be isolated for further study ex vivo to establish long-term safety of CDB-2914 on breast stem cells.
Aim 2 : Establish and characterize mouse mammary stem and progenitor cell populations as ex vivo models to study effects of CDB-2914 on the breast, studies with a focus on steroid receptor expression and function. Developing a long-term estrogen-free contraception using a PRM that would also prevent P action on the breast is potentially a contraceptive method with dual benefits, i.e., prevention of conception and breast disease. New findings on endometrial effects of PRMs justify further clinical evaluation.
Aim 3 : The first clinical study will explore the endometrial effects of CDB 2914 delivered from a vaginal ring at a dose blocking ovulation. Endometrial histology and proliferation markers will be determined over time. A second clinical study will evaluate whether sequential 2-week progestin courses after 12-week PRM ring use will reverse any endometrial changes. The third clinical study will evaluate the effects of low doses of CDB- 2914 applied using an intrauterine system to induce only a local effect while a normal ovulation is maintained.
Aim 4 : Establish a human endometrial epithelial cell (HEEC) model for molecular modeling studies and characterization of the effects of progestins compared to those of CDB-2914 and SPRMs on the endometrium: a) Determine cell cycle-related effects when estrogen is present or absent, comparing the activity of progestins (P4;medroxyprogesterone acetate, MPA) with that of CDB-2914 using several immortalized human endometrial carcinoma cells;b) Compare effects of SPRMs, progestin, estrogen, or sequential hormone exposure on HEEC functions, using gene expression and proteomic analyses. Project III combines basic, translational and clinical studies to further ascertain the safety of CDB-2914 for human use as well as characterization of this PRM's molecular mechanisms.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HD029990-19
Application #
8060463
Study Section
Special Emphasis Panel (ZHD1)
Project Start
Project End
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
19
Fiscal Year
2010
Total Cost
$213,498
Indirect Cost
Name
Population Council
Department
Type
DUNS #
071050090
City
New York
State
NY
Country
United States
Zip Code
10017
Li, Linxi; Mao, Baiping; Wu, Siwen et al. (2018) Regulation of spermatid polarity by the actin- and microtubule (MT)-based cytoskeletons. Semin Cell Dev Biol 81:88-96
Wen, Qing; Tang, Elizabeth I; Li, Nan et al. (2018) Regulation of Blood-Testis Barrier (BTB) Dynamics, Role of Actin-, and Microtubule-Based Cytoskeletons. Methods Mol Biol 1748:229-243
Chen, Shuhua; Kumar, Narender; Mao, Zisu et al. (2018) Therapeutic progestin segesterone acetate promotes neurogenesis: implications for sustaining regeneration in female brain. Menopause 25:1138-1151
Chen, Haiqi; Lui, Wing-Yee; Mruk, Dolores D et al. (2018) Monitoring the Integrity of the Blood-Testis Barrier (BTB): An In Vivo Assay. Methods Mol Biol 1748:245-252
Wen, Qing; Tang, Elizabeth I; Gao, Ying et al. (2018) Signaling pathways regulating blood-tissue barriers - Lesson from the testis. Biochim Biophys Acta Biomembr 1860:141-153
Mao, Baiping; Mruk, Dolores; Lian, Qingquan et al. (2018) Mechanistic Insights into PFOS-Mediated Sertoli Cell Injury. Trends Mol Med 24:781-793
Kannan, Athilakshmi; Bhurke, Arpita; Sitruk-Ware, Regine et al. (2018) Characterization of Molecular Changes in Endometrium Associated With Chronic Use of Progesterone Receptor Modulators: Ulipristal Acetate Versus Mifepristone. Reprod Sci 25:320-328
Xiao, Xiang; Ni, Ya; Yu, Chenhuan et al. (2018) Src family kinases (SFKs) and cell polarity in the testis. Semin Cell Dev Biol 81:46-53
Chen, Haiqi; Mruk, Dolores D; Lui, Wing-Yee et al. (2018) Cell polarity and planar cell polarity (PCP) in spermatogenesis. Semin Cell Dev Biol 81:71-77
Chen, Haiqi; Xiao, Xiang; Lui, Wing-Yee et al. (2018) Vangl2 regulates spermatid planar cell polarity through microtubule (MT)-based cytoskeleton in the rat testis. Cell Death Dis 9:340

Showing the most recent 10 out of 256 publications