CELLULAR IMAGING CORE (CORE C) ABSTRACT The research efforts of IDDRC investigators at Boston Children's Hospital and Harvard Medical School have increasingly come to rely on high-end and expensive microscopy and digital imaging approaches. Understanding the underlying mechanisms and structural changes associated with neurodevelopmental disorders require that researchers visualize the morphological and cell signaling events in fixed tissue and in intact network of cells in situ, such as in in vitro organ explants and in vivo awake behaving organisms. The IDDRC Cellular Imaging Core furthers research and advancement of knowledge by lowering barriers to entry for state-of-the-art light microscopy.
Our specific aims are: 1) To provide affordable access to high-end microscopy instruments and image analysis workstations. 2) To provide training, consultation and education to IDDRC researchers, and 3) To identify and obtain new equipment and technology that is relevant to the research of IDDRC investigators. The core offers multiphoton, confocal and widefield microscopes as well as image analysis workstations and software that are widely used by IDDRC investigators. Over the past grant period, 32 IDDRC labs have used the core an average of 9,187 hours/year. During this period, the core expanded its capacity and capabilities by raising $1.4 million in outside funding for the purchase of new instrumentation, including a $500,000 NIH shared instrumentation grant for a multiphon/confocal. IDDRC investigators have used the core to investigate and advance our understanding of normal and pathological neural development, plasticity, and function. The goal of the Boston Children's Hospital IDDRC Cellular Imaging Core for this next funding period is to continue to provide IDDRC investigators with affordable access to state-of-the-art equipment, services, training and advice for projects using light microscopy. In fulfilling this goal, the core helps to insure that instrument cost or technical complexity will not slow or thwart research into intellectual disabilities and developmental disorders.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54HD090255-01
Application #
9229198
Study Section
Special Emphasis Panel (ZHD1-DSR-H (50))
Project Start
2016-09-23
Project End
2021-05-31
Budget Start
2016-09-01
Budget End
2017-05-31
Support Year
1
Fiscal Year
2016
Total Cost
$97,739
Indirect Cost
$42,519
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Wells, Elizabeth M; Ullrich, Nicole J; Seidel, Kristy et al. (2018) Longitudinal assessment of late-onset neurologic conditions in survivors of childhood central nervous system tumors: a Childhood Cancer Survivor Study report. Neuro Oncol 20:132-142
Lundgren, Pia; Hård, Anna-Lena; Wilde, Åsa et al. (2018) Implementing higher oxygen saturation targets reduced the impact of poor weight gain as a predictor for retinopathy of prematurity. Acta Paediatr 107:767-773
Guo, Nannan; Soden, Marta E; Herber, Charlotte et al. (2018) Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat Med 24:438-449
Troller-Renfree, Sonya; Zeanah, Charles H; Nelson, Charles A et al. (2018) Neural and Cognitive Factors Influencing the Emergence of Psychopathology: Insights From the Bucharest Early Intervention Project. Child Dev Perspect 12:28-33
Sacharow, Stephanie J; Dudenhausen, Elizabeth E; Lomelino, Carrie L et al. (2018) Characterization of a novel variant in siblings with Asparagine Synthetase Deficiency. Mol Genet Metab 123:317-325
Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Schneider, Ronen et al. (2018) Acute multi-sgRNA knockdown of KEOPS complex genes reproduces the microcephaly phenotype of the stable knockout zebrafish model. PLoS One 13:e0191503
Stahl, Andreas; Krohne, Tim U; Eter, Nicole et al. (2018) Comparing Alternative Ranibizumab Dosages for Safety and Efficacy in Retinopathy of Prematurity: A Randomized Clinical Trial. JAMA Pediatr 172:278-286
Jaimes, Camilo; Cheng, Henry H; Soul, Janet et al. (2018) Probabilistic tractography-based thalamic parcellation in healthy newborns and newborns with congenital heart disease. J Magn Reson Imaging 47:1626-1637
Behrendt, Hannah F; Firk, Christine; Nelson 3rd, Charles A et al. (2018) Motion correction for infant functional near-infrared spectroscopy with an application to live interaction data. Neurophotonics 5:015004
Trakhtenberg, Ephraim F; Li, Yiqing; Feng, Qian et al. (2018) Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury. Exp Neurol 300:22-29

Showing the most recent 10 out of 498 publications