MOUSE NEURODEVELOPMENTAL BEHAVIOR CORE (CORE D) ABSTRACT The Mouse Neurodevelopmental Behavior Core (NBC) at Boston Children's Hospital (BCH) is designed to enable the comprehensive identification and quantification of complex behavioural phenotypes in mouse models of neurodevelopmental disorders. As well as providing cutting edge equipment, we continually validate the best protocols and generate base-line data for quality control management. Having such capabilities for in vivo analysis of mouse models of human disorders facilitates efficacy testing of novel therapeutic compounds and interventions, to provide evidence for transitioning into the clinic. The Core is equipped to perform extensive batteries of tests that phenotype specific social, emotional and cognitive behaviors, as well as motor, auditory and visual function, together with the general health of the animals. In addition, the NBC provides complementary technologies for evaluating the neurobiological mechanisms behind changes in behaviour, such as EEG, ECG and lasers for optogenetic studies. The core also provides a unique opportunity for training fellows, graduate and undergraduate students, as well as PIs, in the in vivo analysis of mouse models of human disorders. Looking ahead, we aim to keep the NBC at the forefront of in vivo analysis of genetic models of human disorders. One major new initiative will be the establishment of a rat behavioral facility to exploit the increasing ability to efficiently modify the genome of rats to create genetic models of tuberosclerosis, Rett syndrome and other neurodevelopmental disorders. This will occupy ~1500 sq.ft of new space for the NBC and we have the required equipment for measuring cognition, anxiety, exploration and motor function in rats as well as EEG and in vivo imaging capacity. Another initiative is to offer reverse light housing for up to 300 mouse cages, so that investigators can study mouse behavior over the full diurnal cycle. We are also developing synergistic partnerships with the Cellular Imaging Core that has a two photon microscope to image neurons in conscious behaving mice, to bring together cutting edge imaging and behavioral technologies to the enable the mechanistic study of neurodevelopmental diseases. Finally, we recognize that the IDDRC network of behavioral Core facilities in the US provides a unique opportunity to establish a set of standards for behavioral assessment and reporting of rodent models of neurodevelopmental disorders.We will run with Jackie Crawley (Director, UC Davis, IDDRC Behavior Core Facility) a series of comparative studies to establish standardized protocols for execution and analysis of neurodevelopmental disorders.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HD090255-04
Application #
9748883
Study Section
Special Emphasis Panel (ZHD1)
Project Start
Project End
Budget Start
2019-06-01
Budget End
2020-05-31
Support Year
4
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Boston Children's Hospital
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Joyal, Jean-Sébastien; Gantner, Marin L; Smith, Lois E H (2018) Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 64:131-156
Zhang, Fan; Wu, Weining; Ning, Lipeng et al. (2018) Suprathreshold fiber cluster statistics: Leveraging white matter geometry to enhance tractography statistical analysis. Neuroimage 171:341-354
Damar, Ugur; Gersner, Roman; Johnstone, Joshua T et al. (2018) Alterations in the Timing of Huperzine A Cerebral Pharmacodynamics in the Acute Traumatic Brain Injury Setting. J Neurotrauma 35:393-397
Joureau, Barbara; de Winter, Josine Marieke; Conijn, Stefan et al. (2018) Dysfunctional sarcomere contractility contributes to muscle weakness in ACTA1-related nemaline myopathy (NEM3). Ann Neurol 83:269-282
Ordonez, Dalila G; Lee, Michael K; Feany, Mel B (2018) ?-synuclein Induces Mitochondrial Dysfunction through Spectrin and the Actin Cytoskeleton. Neuron 97:108-124.e6
Blake, Kimbria J; Baral, Pankaj; Voisin, Tiphaine et al. (2018) Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nat Commun 9:37
Bichsel, Colette A; Goss, Jeremy; Alomari, Mohammed et al. (2018) Association of Somatic GNAQ Mutation With Capillary Malformations in a Case of Choroidal Hemangioma. JAMA Ophthalmol :
Kelly, Elyza; Schaeffer, Samantha M; Dhamne, Sameer C et al. (2018) mGluR5 Modulation of Behavioral and Epileptic Phenotypes in a Mouse Model of Tuberous Sclerosis Complex. Neuropsychopharmacology 43:1457-1465
Pena, Loren D M; Jiang, Yong-Hui; Schoch, Kelly et al. (2018) Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases. Genet Med 20:464-469
Ley, David; Hallberg, Boubou; Hansen-Pupp, Ingrid et al. (2018) rhIGF-1/rhIGFBP-3 in Preterm Infants: A Phase 2 Randomized Controlled Trial. J Pediatr :

Showing the most recent 10 out of 498 publications