We propose to operate a state-of-the-art genome center to serve the scientific community. The Center will: (i) Have the flexible capability to produce a wide range of high-quality sequencing products - including whole-genome resequencing, whole-exome resequencing, de novo genome assembly, whole-transcriptome analysis, and epigenomic sequencing; (ii) Have the experience and ability to design, execute and analyze a wide range of scientific projects - including in medical genetics, cancer genomics, vertebrates genomics, microbial genomics and epigenomic analyses; (iii) Advance the state-of-the-art of sequencing - including by decreasing costs, developing new applications and pioneering new sequencing technologies;and (iv) Serve as a scientific resource for the biomedical community - including by creating and teaching courses, interacting with the research community to help with project design and working with the medical community to adapt protocols to clinical settings.

Public Health Relevance

The Center's program will accelerate biomedical research, including through systematic identification of genes responsible for inherited diseases, genes recurrently mutated in cancer, functional elements encoded in the human genome, and microbes that interact with humans in health and disease. The knowledge will be made rapidly and freely available to the scientific community. It will provide a foundation for efforts to develop understand disease mechanisms and to develop approaches to prevention, diagnosis and therapy.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HG003067-12
Application #
8584299
Study Section
Special Emphasis Panel (ZHG1-HGR-P (O2))
Program Officer
Felsenfeld, Adam
Project Start
2003-11-10
Project End
2015-10-31
Budget Start
2013-11-01
Budget End
2014-10-31
Support Year
12
Fiscal Year
2014
Total Cost
$8,091,034
Indirect Cost
$906,515
Name
Broad Institute, Inc.
Department
Type
DUNS #
623544785
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Raghavan, Neha S; Brickman, Adam M; Andrews, Howard et al. (2018) Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer's disease. Ann Clin Transl Neurol 5:832-842
Persinoti, Gabriela F; Martinez, Diego A; Li, Wenjun et al. (2018) Whole-Genome Analysis Illustrates Global Clonal Population Structure of the Ubiquitous Dermatophyte Pathogen Trichophyton rubrum. Genetics 208:1657-1669
Jayasinghe, Reyka G; Cao, Song; Gao, Qingsong et al. (2018) Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Rep 23:270-281.e3
Blue, E E; Yu, C-E; Thornton, T A et al. (2018) Variants regulating ZBTB4 are associated with age-at-onset of Alzheimer's disease. Genes Brain Behav 17:e12429
Cissé, Ousmane H; Ma, Liang; Wei Huang, Da et al. (2018) Comparative Population Genomics Analysis of the Mammalian Fungal Pathogen Pneumocystis. MBio 9:
Ojha, Juhi; Dyagil, Iryna; Finch, Stuart C et al. (2018) Genomic characterization of chronic lymphocytic leukemia (CLL) in radiation-exposed Chornobyl cleanup workers. Environ Health 17:43
Saltz, Joel; Gupta, Rajarsi; Hou, Le et al. (2018) Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Rep 23:181-193.e7
Peng, Xinxin; Chen, Zhongyuan; Farshidfar, Farshad et al. (2018) Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Rep 23:255-269.e4
Malta, Tathiane M; Sokolov, Artem; Gentles, Andrew J et al. (2018) Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell 173:338-354.e15
Huang, Kuan-Lin; Mashl, R Jay; Wu, Yige et al. (2018) Pathogenic Germline Variants in 10,389 Adult Cancers. Cell 173:355-370.e14

Showing the most recent 10 out of 349 publications