The Animal Core will provide expertise in planning, performing, and interpreting experiments performed in large animal models of human cardiovascular disease. The resources of the Animal Core allow humane and efficient utilization of swine for survival surgery, catheterization procedures, and hemodynamic assessments. These resources have operated smoothly through a variety of other translational research programs including the development of cardiovascular devices and diagnostic tools; large animal experiments in our area have led in many cases directly to human clinical trials. For the projects in this proposal, preparation and instrumentation of swine to model ischemic myocardial dysfunction will be done by techniques established and operating in our group. Delivery of bone marrow derived mesenchymal stem cells and of cardiac stem cells to swine hearts in vivo will be done under conditions and using devices which mimic and parallel planned clinical studies. The director of the Animal Core is also a key participant in the clinical trials in Projects 1 and 3, and the use of newer cell delivery techniques in the swine model will benefit the safety of human subjects in the clinical studies, as the experience gained in the Animal Core transfers directly to the clinical studies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HL081028-02
Application #
7312648
Study Section
Special Emphasis Panel (ZHL1)
Project Start
Project End
Budget Start
2006-09-01
Budget End
2007-08-31
Support Year
2
Fiscal Year
2006
Total Cost
$150,093
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Ramireddy, Archana; Brodt, Chad R; Mendizabal, Adam M et al. (2017) Effects of Transendocardial Stem Cell Injection on Ventricular Proarrhythmia in Patients with Ischemic Cardiomyopathy: Results from the POSEIDON and TAC-HFT Trials. Stem Cells Transl Med 6:1366-1372
Golpanian, Samuel; El-Khorazaty, Jill; Mendizabal, Adam et al. (2015) Effect of aging on human mesenchymal stem cell therapy in ischemic cardiomyopathy patients. J Am Coll Cardiol 65:125-32
Yoneyama, Kihei; Lima, João A C (2015) Alcohol consumption and myocardial remodeling in elderly women and men. Circ Cardiovasc Imaging 8:
Magalhães, Tiago A; Kishi, Satoru; George, Richard T et al. (2015) Combined coronary angiography and myocardial perfusion by computed tomography in the identification of flow-limiting stenosis - The CORE320 study: An integrated analysis of CT coronary angiography and myocardial perfusion. J Cardiovasc Comput Tomogr 9:438-45
Suncion, Viky Y; Ghersin, Eduard; Fishman, Joel E et al. (2014) Does transendocardial injection of mesenchymal stem cells improve myocardial function locally or globally?: An analysis from the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis (POSEIDON) randomized trial. Circ Res 114:1292-301
Karantalis, Vasileios; DiFede, Darcy L; Gerstenblith, Gary et al. (2014) Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Ce Circ Res 114:1302-10
Donekal, Sirisha; Venkatesh, Bharath A; Liu, Yuan Chang et al. (2014) Interstitial fibrosis, left ventricular remodeling, and myocardial mechanical behavior in a population-based multiethnic cohort: the Multi-Ethnic Study of Atherosclerosis (MESA) study. Circ Cardiovasc Imaging 7:292-302
Malliaras, Konstantinos; Makkar, Raj R; Smith, Rachel R et al. (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63:110-22
Heldman, Alan W; DiFede, Darcy L; Fishman, Joel E et al. (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311:62-73
Williams, Adam R; Hatzistergos, Konstantinos E; Addicott, Benjamin et al. (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127:213-23

Showing the most recent 10 out of 71 publications