The Clinical Trial Core has been established to provide support in the development and performance of the clinical trials in this proposal. This includes clinical resource support for the mesenchymal stem cell clinical program (Project 1,Specific Aims 2 and 3), and the cardiac stem cell clinical program (Project 3, Specific Aims 2 and 3).
The aims are to provide: 1. Investigator support: This support includes assisting with protocol development, patient recruitment, assessing appropriateness for entry into the studies, obtaining informed consent, assisting with data collection and evaluation of the safety and efficacy of stem cell therapy, and assisting with clinical follow-up of the enrolled patients. Investigators in the Clinical Core will work closely with the investigators in each of these projects, as well as the Data and Coordinating Center, the Food and Drug Administration, and the National Heart Lung and Blood Institute to ensure appropriate conduct of the trials. 2. Nursing support: The critical role of the research nursing team includes assisting patient recruitment and enrollment, data entry, patient instruction, patient follow-up, patient safety evaluation, study coordination, and data entry. 3. Equipment: State of the art dedicated research equipment that will be utilized to measure efficacy in these trials includes a cardio-pulmonary exercise laboratory. Other state of the art equipment utilized in these clinical programs includes a catheterization laboratory dedicated to performing right heart catheterizations and endomyocardial biopsies, echocardiogram, ECG machine, and computers. Separate state of the art catheterization and electrophysiology laboratories are present to support the specific aims of this proposal. 4. Investigators and nurses in the Clinical Core will coordinate subject participation and evaluation with the General Clinical Research Center at the Johns Hopkins Hospital.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HL081028-02
Application #
7312649
Study Section
Special Emphasis Panel (ZHL1)
Project Start
Project End
Budget Start
2006-09-01
Budget End
2007-08-31
Support Year
2
Fiscal Year
2006
Total Cost
$125,262
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Ramireddy, Archana; Brodt, Chad R; Mendizabal, Adam M et al. (2017) Effects of Transendocardial Stem Cell Injection on Ventricular Proarrhythmia in Patients with Ischemic Cardiomyopathy: Results from the POSEIDON and TAC-HFT Trials. Stem Cells Transl Med 6:1366-1372
Golpanian, Samuel; El-Khorazaty, Jill; Mendizabal, Adam et al. (2015) Effect of aging on human mesenchymal stem cell therapy in ischemic cardiomyopathy patients. J Am Coll Cardiol 65:125-32
Yoneyama, Kihei; Lima, João A C (2015) Alcohol consumption and myocardial remodeling in elderly women and men. Circ Cardiovasc Imaging 8:
Magalhães, Tiago A; Kishi, Satoru; George, Richard T et al. (2015) Combined coronary angiography and myocardial perfusion by computed tomography in the identification of flow-limiting stenosis - The CORE320 study: An integrated analysis of CT coronary angiography and myocardial perfusion. J Cardiovasc Comput Tomogr 9:438-45
Heldman, Alan W; DiFede, Darcy L; Fishman, Joel E et al. (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311:62-73
Suncion, Viky Y; Ghersin, Eduard; Fishman, Joel E et al. (2014) Does transendocardial injection of mesenchymal stem cells improve myocardial function locally or globally?: An analysis from the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis (POSEIDON) randomized trial. Circ Res 114:1292-301
Karantalis, Vasileios; DiFede, Darcy L; Gerstenblith, Gary et al. (2014) Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Ce Circ Res 114:1302-10
Donekal, Sirisha; Venkatesh, Bharath A; Liu, Yuan Chang et al. (2014) Interstitial fibrosis, left ventricular remodeling, and myocardial mechanical behavior in a population-based multiethnic cohort: the Multi-Ethnic Study of Atherosclerosis (MESA) study. Circ Cardiovasc Imaging 7:292-302
Malliaras, Konstantinos; Makkar, Raj R; Smith, Rachel R et al. (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63:110-22
Williams, Adam R; Hatzistergos, Konstantinos E; Addicott, Benjamin et al. (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127:213-23

Showing the most recent 10 out of 71 publications