We propose to create IDASH, a national center for biomedical computing that will develop new algorithms, open-source tools, computational infrastructure and services that will enable biomedical and behavioral researchers nationwide to integrate Data for Analysis, Anonymization, and Sharing, IDASH will address fundamental challenges to research progress by providing a secure, privacy-preserving environment in which researchers can analyze genomic, transcriptomic and highly annotated phenotypical data. Leveraging the high performance capabilities of the San Diego Supercomputer Center (SDSC), and scalable cyberinfrastructure developed by the California Institute for Telecommunications and Information Technology, iDASH will provide synergistic application of tools and systems to advance research and improve human health. iDASH will focus on privacy protection through anonymization, data simulation, and an informed consent management system. It will focus on data analysis through the development of new tools for data annotation and integration across temporal and spatial dimensions, and develop algorithms for rare event detection and risk adjustment. To enable efficient analysis of short-reads from massively parallel sequencing, compression algorithms and a new genomic query system will be developed. Three Driving Biological Projects that span the molecular-individual-population spectrum will motivate, inform and support tool development: (1) Molecular Phenotyping of Kawasaki Disease;(2) Post-Marketing Pharmacosurveillance of Anticoagulation Agents;(3) Individualized Intervention to Enhance Physical Activity. iDASH trainees will complete core biomedical informatics courses and will have options for short- and long-term graduate training at San Diego State University and UCSD. We will collaborate with other NCBCs and disseminate tools via annual workshops for users and developers, presentations at major conferences, and scientific publications. We will develop a comprehensive web portal to download tools, upload data, and obtain documentation and user-friendly training materials. An experienced leadership team will use effective project management practices to support collaboration as well as monitor and ensure progress toward iDASH goals.

Public Health Relevance

Contemporary biomedical and behavioral research requires significant computational resources. There is an increasing divide between researchers who have these resources and those who do not. iDASH will decrease this gap and accelerate discoveries by providing innovative services, algorithms, open-source software, infrastructure, and training to facilitate data analysis and sharing by biomedical researchers.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54HL108460-01
Application #
8012935
Study Section
Special Emphasis Panel (ZRG1-BST-K (52))
Program Officer
Larkin, Jennie E
Project Start
2010-09-20
Project End
2015-06-30
Budget Start
2010-09-20
Budget End
2011-06-30
Support Year
1
Fiscal Year
2010
Total Cost
$3,369,370
Indirect Cost
Name
University of California San Diego
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Chen, Luyao; Aziz, Md Momin; Mohammed, Noman et al. (2018) Secure large-scale genome data storage and query. Comput Methods Programs Biomed 165:129-137
Groat, Danielle; Soni, Hiral; Grando, Maria Adela et al. (2018) Self-Reported Compensation Techniques for Carbohydrate, Exercise, and Alcohol Behaviors in Patients With Type 1 Diabetes on Insulin Pump Therapy. J Diabetes Sci Technol 12:412-414
Nguyen, Nghia H; Khera, Rohan; Ohno-Machado, Lucila et al. (2018) Annual Burden and Costs of Hospitalization for High-Need, High-Cost Patients With Chronic Gastrointestinal and Liver Diseases. Clin Gastroenterol Hepatol 16:1284-1292.e30
Weng, Wei-Hung; Wagholikar, Kavishwar B; McCray, Alexa T et al. (2017) Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. BMC Med Inform Decis Mak 17:155
Groat, Danielle; Grando, Maria A; Thompson, Bithika et al. (2017) A Methodology to Compare Insulin Dosing Recommendations in Real-Life Settings. J Diabetes Sci Technol 11:1174-1182
Doan, Son; Ritchart, Amanda; Perry, Nicholas et al. (2017) How Do You #relax When You're #stressed? A Content Analysis and Infodemiology Study of Stress-Related Tweets. JMIR Public Health Surveill 3:e35
Grando, Maria Adela; Groat, Danielle; Soni, Hiral et al. (2017) Characterization of Exercise and Alcohol Self-Management Behaviors of Type 1 Diabetes Patients on Insulin Pump Therapy. J Diabetes Sci Technol 11:240-246
Burgoyne, Adam M; De Siena, Martina; Alkhuziem, Maha et al. (2017) Duodenal-Jejunal Flexure GI Stromal Tumor Frequently Heralds Somatic NF1 and Notch Pathway Mutations. JCO Precis Oncol 2017:
Chen, Feng; Wang, Shuang; Jiang, Xiaoqian et al. (2017) PRINCESS: Privacy-protecting Rare disease International Network Collaboration via Encryption through Software guard extensionS. Bioinformatics 33:871-878
Vaidya, Jaideep; Shafiq, Basit; Asani, Muazzam et al. (2017) A Scalable Privacy-preserving Data Generation Methodology for Exploratory Analysis. AMIA Annu Symp Proc 2017:1695-1704

Showing the most recent 10 out of 176 publications