The Administrative Core will be critical in providing overall leadership and central administrative support to the Chemistry Center, including establishing and implementing, in collaboration with center staff, assay providers and the NIH Network Science Officer, a Compound Probe Development Plan (CPDP) for each program. One of the most critical functions of the Administrative Core will be communication with other Centers within the MLPCN, including coordination of studies, transfer of compounds, and efficient communication of data to facilitate iterative compound synthesis and testing. In addition, the Administrative Core will be responsible for organization for all Center meetings, travel arrangements for attendance of MLPCN meetings, preparation of progress reports and noncompetitive renewal applications. Finally, the administrative core will be responsible for recruitment and staffing as well as budgetary management of the Program. The following specific aims summarize the major functions of the administrative core:
AIM 1. To establish goals of each probe optimization effort and initiate probe optimization by assigning lead chemist and coordinating communication between the Vanderbilt chemistry center, other MLPCN centers, the MLSMR, and the NIH program administrators.
AIM 2. To effectively manage the integration of activities of medicinal chemistry, informatics and pharmacology components within the Vanderbilt Specialized Chemistry Center.
AIM 3. To coordinate and manage communication and transfer of reagents, data and novel probes to the scientific community.
AIM 4. To recruit and maintain staff for the proposed MLPCN facility to support and advance the MLPCN goals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54MH084659-05
Application #
8379439
Study Section
Special Emphasis Panel (ZRG1-IFCN-K)
Project Start
Project End
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
5
Fiscal Year
2012
Total Cost
$280,396
Indirect Cost
$97,727
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Stoll, Kevin; Hart, Rachel; Lindsley, Craig W et al. (2018) Effects of muscarinic M1 and M4 acetylcholine receptor stimulation on extinction and reinstatement of cocaine seeking in male mice, independent of extinction learning. Psychopharmacology (Berl) 235:815-827
Gogliotti, Rocco G; Senter, Rebecca K; Fisher, Nicole M et al. (2017) mGlu7 potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Sci Transl Med 9:
Lebois, Evan P; Schroeder, Jason P; Esparza, Thomas J et al. (2017) Disease-Modifying Effects of M1 Muscarinic Acetylcholine Receptor Activation in an Alzheimer's Disease Mouse Model. ACS Chem Neurosci 8:1177-1187
Long, Madeline F; Engers, Julie L; Chang, Sichen et al. (2017) Discovery of a novel 2,4-dimethylquinoline-6-carboxamide M4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorg Med Chem Lett 27:4999-5001
Bender, Aaron M; Weiner, Rebecca L; Luscombe, Vincent B et al. (2017) Discovery and optimization of 3-(4-aryl/heteroarylsulfonyl)piperazin-1-yl)-6-(piperidin-1-yl)pyridazines as novel, CNS penetrant pan-muscarinic antagonists. Bioorg Med Chem Lett 27:3576-3581
Wood, Michael R; Noetzel, Meredith J; Poslusney, Michael S et al. (2017) Challenges in the development of an M4 PAM in vivo tool compound: The discovery of VU0467154 and unexpected DMPK profiles of close analogs. Bioorg Med Chem Lett 27:171-175
Bender, Aaron M; Weiner, Rebecca L; Luscombe, Vincent B et al. (2017) Synthesis and evaluation of 4,6-disubstituted pyrimidines as CNS penetrant pan-muscarinic antagonists with a novel chemotype. Bioorg Med Chem Lett 27:2479-2483
Melancon, Bruce J; Wood, Michael R; Noetzel, Meredith J et al. (2017) Optimization of M4 positive allosteric modulators (PAMs): The discovery of VU0476406, a non-human primate in vivo tool compound for translational pharmacology. Bioorg Med Chem Lett 27:2296-2301
Garcia-Barrantes, Pedro M; Cho, Hyekyung P; Metts, Adam M et al. (2016) Lead optimization of the VU0486321 series of mGlu(1) PAMs. Part 2: SAR of alternative 3-methyl heterocycles and progress towards an in vivo tool. Bioorg Med Chem Lett 26:751-756
Wu, Yang; Stauffer, Shaun R; Stanfield, Robyn L et al. (2016) Discovery of Small-Molecule Nonfluorescent Inhibitors of Fluorogen-Fluorogen Activating Protein Binding Pair. J Biomol Screen 21:74-87

Showing the most recent 10 out of 146 publications