Many pieces of evidence now demonstrate that cellular superoxide dismutase (SOD) activities are associated with the maintenance of the integrity of the nervous system. For example, reduced Cu-ZnSOD activity and associated neuropathologies are seen in Amyotrophic Lateral Sclerosis (ALS) patients, an ALS-like phenotype appears in mice expressing the mutant Cu-ZnSOD peptde, and the extreme neuropathologies reported in the case of MnSOD knock out mice strongly support this notion. However, it can be argued that the observed neuromuscular pathologies are terminal phenotypic effects that did not arise primarily due to reduced SOD activity. In other words, the critical connection between oxidative damage and neurodegeneration remains elusive. An oxidative damage protection system is essential ubiquitously in the mitochondria of all aerobic organisms, as evident from the fact that lack of mitochondrial SOD activity reduces the life span in all organisms studied. We hypothesize that reduced MnSOD activity should initiate neuromuscular degeneration at an earlier age and that degeneration ought to be progressive in nature. Our preliminary results support this hypothesis since reduction in MnSOD activity is associated with progressive reduction in motor ability, presumably due to the massive neuronal loss that these flies suffer. A MnSOD null (Sod2n283) and a weak allele (Sod2WK) and their combinations provide us with a unique model to study the effects of oxidative stress on neuromuscular ability, cognition, neurodegeneration, and how it influences natural aging. Using the Drosophila model in this context will be ideal because of the (1) broad availability of tools for neuropathological and neurophysiological assessments; (2) the short life span allows faster analysis of progressive degeneration events as a function of age; and (3) transgenic overexpression of MnSOD will be employed to rescue any observed pathologies. The study will provide valuable information on oxidative damage induced neurodegeneration as well as how it influences the neuromuscular ability and cognition as a function of age in a whole animal model.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54NS039407-07
Application #
7312781
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2006-09-01
Budget End
2007-08-31
Support Year
7
Fiscal Year
2006
Total Cost
$193,078
Indirect Cost
Name
Howard University
Department
Type
DUNS #
056282296
City
Washington
State
DC
Country
United States
Zip Code
20059
Neziri, Burim; Daci, Armond; Krasniqi, Shaip et al. (2017) The impact of bilateral vagotomy on the physostigmine-induced airway constriction in ferrets. Respir Physiol Neurobiol 242:102-107
Mukherjee, Subhas; Duttaroy, Atanu (2013) Spargel/dPGC-1 is a new downstream effector in the insulin-TOR signaling pathway in Drosophila. Genetics 195:433-41
McCollum, Gin; Klam, Francois; Graf, Werner (2012) Face-infringement space: the frame of reference of the ventral intraparietal area. Biol Cybern 106:219-39
Prevosto, Vincent; Graf, Werner; Ugolini, Gabriella (2011) Proprioceptive pathways to posterior parietal areas MIP and LIPv from the dorsal column nuclei and the postcentral somatosensory cortex. Eur J Neurosci 33:444-60
Wang, Ze-Jun; Sun, Liqin; Jackson, Patrice L et al. (2011) A substituted anilino enaminone acts as a novel positive allosteric modulator of GABA(A) receptors in the mouse brain. J Pharmacol Exp Ther 336:916-24
Mukherjee, Subhas; Forde, Renee; Belton, Amy et al. (2011) SOD2, the principal scavenger of mitochondrial superoxide, is dispensable for embryogenesis and imaginal tissue development but essential for adult survival. Fly (Austin) 5:39-46
Manaye, Kebreten F; Allard, Joanne S; Kalifa, Sara et al. (2011) 17?-estradiol attenuates neuron loss in ovariectomized Dtg A?PP/PS1 mice. J Alzheimers Dis 23:629-39
Pearson, Rebecca J; Gatti, Philip J; Sahibzada, Niaz et al. (2011) Ultrastructural evidence for selective GABAergic innervation of CNS vagal projections to the antrum of the rat. Auton Neurosci 160:21-6
Vrailas-Mortimer, Alysia; del Rivero, Tania; Mukherjee, Subhas et al. (2011) A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev Cell 21:783-95
Wang, Z-J; Sun, L; Peng, W et al. (2011) Ginseng derivative ocotillol enhances neuronal activity through increased glutamate release: a possible mechanism underlying increased spontaneous locomotor activity of mice. Neuroscience 195:1-8

Showing the most recent 10 out of 69 publications