The various rare forms of hereditary peripheral neuropathies are known as Charcot-Marie-Tooth (CMT) disease and comprise a clinically and genetically heterogeneous set of neurological disorders. Traditionally, the disease is divided into demyelinating CMT1 forms with decreased nerve conduction velocities (NCV) and axonal CMT2 types with normal NCVs. More than 35 different genes have been identified for CMT and include autosomal dominant, recessive and X-linked forms. Still, only 40% of axonal (CMT2) cases currently have a mutation in one of the known genes. Importantly, the degree of phenotypic variation of severity, age-at-onset, and other measures within families is quite remarkable, yet genetic modifying factors have not been identified. Modifying factors in CMT families are likely targets for intervention and may well be important for other non-hereditary peripheral neuropathies, such as diabetic neuropathy. These studies have proven difficult however, primarily due to a lack of collections of patients with consistent clinical evaluations and their DNA. The proposed Rare Diseases Clinical Research Consortia (RDCRC) will substantially enhance our resources and quickly provide a large number of CMT patients and families evaluated with the same clinical severity score. A new generation of genetic tools is now available to tackle these important questions, such as genome-wide association studies and next-generation sequencing technology. These will also be applied to identify additional CMT2 genes in small pedigrees using innovative approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54NS065712-03
Application #
8330835
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
2012-01-01
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
3
Fiscal Year
2011
Total Cost
$515,832
Indirect Cost
Name
Wayne State University
Department
Type
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Abrams, Alexander J; Fontanesi, Flavia; Tan, Natalie B L et al. (2018) Insights into the genotype-phenotype correlation and molecular function of SLC25A46. Hum Mutat 39:1995-2007
Sandelius, Åsa; Zetterberg, Henrik; Blennow, Kaj et al. (2018) Plasma neurofilament light chain concentration in the inherited peripheral neuropathies. Neurology 90:e518-e524
Lassuthova, Petra; Rebelo, Adriana P; Ravenscroft, Gianina et al. (2018) Mutations in ATP1A1 Cause Dominant Charcot-Marie-Tooth Type 2. Am J Hum Genet 102:505-514
Panosyan, Francis B; Kirk, Callyn A; Marking, Devon et al. (2018) Carpal tunnel syndrome in inherited neuropathies: A retrospective survey. Muscle Nerve 57:388-394
Synofzik, Matthis; Helbig, Katherine L; Harmuth, Florian et al. (2018) De novo ITPR1 variants are a recurrent cause of early-onset ataxia, acting via loss of channel function. Eur J Hum Genet 26:1623-1634
Shy, Michael E (2018) Antisense oligonucleotides offer hope to patients with Charcot-Marie-Tooth disease type 1A. J Clin Invest 128:110-112
Jerath, Nivedita U; Mankodi, Ami; Crawford, Thomas O et al. (2018) Charcot-Marie-Tooth Disease type 4C: Novel mutations, clinical presentations, and diagnostic challenges. Muscle Nerve 57:749-755
Tomaselli, Pedro J; Horga, Alejandro; Rossor, Alexander M et al. (2018) IGHMBP2 mutation associated with organ-specific autonomic dysfunction. Neuromuscul Disord 28:1012-1015
Johnson, Nicholas E; Heatwole, Chad; Creigh, Peter et al. (2018) The Charcot-Marie-Tooth Health Index: Evaluation of a Patient-Reported Outcome. Ann Neurol 84:225-233
Davies, Jenny L; Engelstad Sr.,, Janean K; E Gove, Linde et al. (2018) Somatotopic heat pain thresholds and intraepidermal nerve fibers in health. Muscle Nerve 58:509-516

Showing the most recent 10 out of 189 publications