Dominantly inherited Alzheimer's disease (AD) is an attractive model for study because the responsible mutations have known biochemical consequences that underlie the pathological basis of the disorder. The opportunity to determine the sequence of imaging and biomarker changes in asymptomatic gene carriers who are destined to develop AD may reveal critical information about the pathobiological cascade that culminates in symptomatic disease. Because the clinical and pathological phenotypes of autosomal dominant AD (ADAD) appear similar to those for the far more common late-onset sporadic AD, the nature and sequence of brain changes in ADAD also may be relevant for late-onset AD. However, individuals with ADAD are few and are geographically dispersed worldwide. In its initial funding period, the Dominantly Inherited Alzheimer's Network (DIAN) has established an international, multicenter registry of individuals (gene carriers and noncarriers; asymptomatic and symptomatic) who are biological adult children of a parent with a known causative mutation for AD in the amyloid precursor protein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes in which the individuals are evaluated at entry and longitudinally thereafter with standard instruments to include the Uniform Data Set of the Alzheimer's Disease Centers, structural, functional, and amyloid imaging protocols developed by the Alzheimer's Disease Neuroimaging Initiative (ADNI), biological fluids (blood; CSF) in accordance with the ADNI protocols, and histopathological examination of cerebral tissue in individuals who come to autopsy also using ADNI protocols. In addition to establishing the DIAN registry, support was found for DIAN's major hypotheses examined. First, AD biomarker changes will identify MCs many years before these individuals develop symptomatic AD, thus supporting the concept of preclinical AD. Second, the initial biomarker changes in the preclinical stage of ADAD will involve A42, followed by changes related to neurodegeneration, followed by cognitive decline. Third, the clinical and neuropathological phenotypes of ADAD will be similar to, but not identical with, those of sporadic LOAD. Although data obtained in the initial budget period provide support for each of these hypotheses, all have yet to be confirmed with longitudinal data analyses. Hence, this application now emphasizes longitudinal data collection and analyses to truly appreciate how biomarkers change over time. This renewal application continues to address the 3 original DIAN hypotheses with increased emphasis on longitudinal data (increasing visit frequency for asymptomatic participants) and maintain current aims (maintenance of the established international DIAN registry of individuals (MCs and NCs, symptomatic and asymptomatic) with attention to preparing and adjusting for participants who participate in current and planned prevention trials. New scientific studies are planned; many funded independently of the DIAN grant and conducted within the DIAN infrastructure at no cost to DIAN.

Public Health Relevance

Alone among leading causes of death in the United States, Alzheimer disease (AD) lacks any effective treatment or prevention mechanism. The Dominantly Inherited Alzheimer Network (DIAN) provides a unique opportunity to understand the development of brain changes in AD, even many years before symptoms of the disease appear. Identifying this asymptomatic period also allows intervention with anti-AD drugs in an effort to prevent symptoms from ever occurring, a goal that is highly relevant not only to DIAN but also the far more common 'sporadic' form of AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Multi-Year Funded Research Project Cooperative Agreement (UF1)
Project #
3UF1AG032438-07S3
Application #
9431368
Study Section
Special Emphasis Panel (ZAG1-ZIJ-6 (J3))
Program Officer
Ryan, Laurie M
Project Start
2008-09-15
Project End
2019-12-31
Budget Start
2017-03-01
Budget End
2019-12-31
Support Year
7
Fiscal Year
2017
Total Cost
$3,495,735
Indirect Cost
$799,824
Name
Washington University
Department
Neurology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Lim, Yen Ying; Hassenstab, Jason; Goate, Alison et al. (2018) Effect of BDNFVal66Met on disease markers in dominantly inherited Alzheimer's disease. Ann Neurol 84:424-435
Suárez-Calvet, Marc; Capell, Anja; Araque Caballero, Miguel Ángel et al. (2018) CSF progranulin increases in the course of Alzheimer's disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol Med 10:
Besser, Lilah; Kukull, Walter; Knopman, David S et al. (2018) Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set. Alzheimer Dis Assoc Disord 32:351-358
Kinnunen, Kirsi M; Cash, David M; Poole, Teresa et al. (2018) Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study. Alzheimers Dement 14:43-53
Lee, Seonjoo; Zimmerman, Molly E; Narkhede, Atul et al. (2018) White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer's disease. PLoS One 13:e0195838
Xiong, Chengjie; Luo, Jingqin; Chen, Ling et al. (2018) Estimating diagnostic accuracy for clustered ordinal diagnostic groups in the three-class case-Application to the early diagnosis of Alzheimer disease. Stat Methods Med Res 27:701-714
Karch, Celeste M; Hernández, Damián; Wang, Jen-Chyong et al. (2018) Human fibroblast and stem cell resource from the Dominantly Inherited Alzheimer Network. Alzheimers Res Ther 10:69
Day, Gregory S; Gordon, Brian A; Perrin, Richard J et al. (2018) In vivo [18F]-AV-1451 tau-PET imaging in sporadic Creutzfeldt-Jakob disease. Neurology 90:e896-e906
Oxtoby, Neil P; Young, Alexandra L; Cash, David M et al. (2018) Data-driven models of dominantly-inherited Alzheimer's disease progression. Brain 141:1529-1544
Chhatwal, Jasmeer P; Schultz, Aaron P; Johnson, Keith A et al. (2018) Preferential degradation of cognitive networks differentiates Alzheimer's disease from ageing. Brain 141:1486-1500

Showing the most recent 10 out of 59 publications