1.
SPECIFIC AIMS The CHAVI-ID Operations and Management Support Component, (OMSC) will serve as a resource to the entire CHAVI-ID, providing overall management, coordination and supervision ofthe program. The CHAVI-ID director, Bart Haynes will serve as the leader of the OMSC, and experienced OMSC staff will be responsible for managing and coordinating the entire range of CHAVI-ID activities, monitoring progress and ensuring that the CHAVI-ID Scientific Agenda and Strategic Plan is developed, renewed, and implemented effectively and efficiently.
Specific Aims will include the following.
Aim 1. Provide overall management, coordination and supervision of programs within CHAVI-ID to optimally facilitate HIV-1 vaccine discovery and development.
Aim 2. Ensure timely financial accounting in CHAVI-ID Aim 3. Ensure compliance with all institutional and federal research guidelines. Management of the CHAVI-ID will require remarkably complex and timely coordination of finances, program management, facilities, research and development activities, and investigators across disciplines and institutions. The expertise this group has gained over the past 6 years in CHAVI, will ensure success in the management of CHAVI-ID.

Public Health Relevance

Effective and timely financial and programmatic management are the key to the success for any scientific consortium. Ensuring the management of individual scientific projects, and having the ability to redirect funds in a timely manner as dictated by the science will facilitate HIV-1 vaccine development.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
5UM1AI100645-03
Application #
8681332
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Duke University
Department
Type
DUNS #
City
Durham
State
NC
Country
United States
Zip Code
27705
Pardi, Norbert; Hogan, Michael J; Naradikian, Martin S et al. (2018) Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med 215:1571-1588
Eudailey, Joshua A; Dennis, Maria L; Parker, Morgan E et al. (2018) Maternal HIV-1 Env Vaccination for Systemic and Breast Milk Immunity To Prevent Oral SHIV Acquisition in Infant Macaques. mSphere 3:
Kelsoe, Garnett; Haynes, Barton F (2018) What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Breaking through Immunity's Glass Ceiling. Cold Spring Harb Perspect Biol 10:
Wagh, Kshitij; Kreider, Edward F; Li, Yingying et al. (2018) Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Rep 25:893-908.e7
Fu, Qingshan; Shaik, Md Munan; Cai, Yongfei et al. (2018) Structure of the membrane proximal external region of HIV-1 envelope glycoprotein. Proc Natl Acad Sci U S A 115:E8892-E8899
Fera, Daniela; Lee, Matthew S; Wiehe, Kevin et al. (2018) HIV envelope V3 region mimic embodies key features of a broadly neutralizing antibody lineage epitope. Nat Commun 9:1111
McMichael, Andrew J (2018) Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? Could a CD8+ T-Cell Vaccine Prevent Persistent HIV Infection? Cold Spring Harb Perspect Biol 10:
Williams, Wilton B; Han, Qifeng; Haynes, Barton F (2018) Cross-reactivity of HIV vaccine responses and the microbiome. Curr Opin HIV AIDS 13:9-14
Bonsignori, Mattia; Scott, Eric; Wiehe, Kevin et al. (2018) Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity 49:1162-1174.e8
Blasi, Maria; Negri, Donatella; LaBranche, Celia et al. (2018) IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Commun Biol 1:134

Showing the most recent 10 out of 261 publications