X-linked anhidrotic ectodermal dysplasia (EDA) is the most frequently occurring of more than 175 ectodermal dysplasias affecting one or more skin appendages. The gene that is mutated to cause this disorder encodes a protein, which we have named ectodysplasin-A, has a single transmembrane region with collagenous and TNF-ligand segments in a long extracelliular carboxyterminal tail. Because individuals with EDA have sparse hair, rudimentary teeth, and few sweat glands, the gene is likely involved at an early point in development. ? We demonstrated that the Tabby mouse, which has many of the features observed in human EDA, is specifically mutated in the corresponding mouse gene. We found that provision of DNA encoding a variant of ectodysplasin in embryonic mice rstores hair follicles and sweat glands. We also have characterized eye phenotypes of Tabby mice including blindness and inflammation susceptibility, and they are also reversed by supplementation with the same isoform. In additional studies to look at the final phases of hair follicle development, we are studying the human disease Cartilage Hair Hypoplasia in a mouse model. These studies should facilitate attempts to maintain or reform hair follicles. ? In mechanistic studies, we have shown that EDA acts through the powerful NF-kB signaling pathway to activate four major target pathways, including the unanticipated involvement of lymphotoxin-beta, a molecule previously only known to help form immune system organs. EDA and all of the downstream pathways are required to continue the development of already initiated skin appendages. Work is continuing to analyze the process and its regulation in detail in mouse models. The models include the study of mice bearing skin-specific transgenes encoding Dkk4, which appears to regulate EdA expression; Shh, which is a major target of EDA; Nemo, a bridge to the NF-kB pathway; and Troy, a possible receptor for EDA action.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Intramural Research (Z01)
Project #
1Z01AG000643-11
Application #
7732268
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2008
Total Cost
$416,169
Indirect Cost
Name
National Institute on Aging
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Kunisada, Makoto; Cui, Chang-Yi; Piao, Yulan et al. (2009) Requirement for Shh and Fox family genes at different stages in sweat gland development. Hum Mol Genet 18:1769-78
Esibizione, Diana; Cui, Chang-Yi; Schlessinger, David (2008) Candidate EDA targets revealed by expression profiling of primary keratinocytes from Tabby mutant mice. Gene 427:42-6
Nakashima, Eiji; Tran, Joseph R; Welting, Tim J M et al. (2007) Cartilage hair hypoplasia mutations that lead to RMRP promoter inefficiency or RNA transcript instability. Am J Med Genet A 143A:2675-81
Cui, Chang-Yi; Hashimoto, Tsuyoshi; Grivennikov, Sergei I et al. (2006) Ectodysplasin regulates the lymphotoxin-beta pathway for hair differentiation. Proc Natl Acad Sci U S A 103:9142-7
Hashimoto, Tsuyoshi; Cui, Chang-Yi; Schlessinger, David (2006) Repertoire of mouse ectodysplasin-A (EDA-A) isoforms. Gene 371:42-51
Cui, Chang-Yi; Schlessinger, David (2006) EDA signaling and skin appendage development. Cell Cycle 5:2477-83
Cui, Chang-Yi; Smith, Janine A; Schlessinger, David et al. (2005) X-linked anhidrotic ectodermal dysplasia disruption yields a mouse model for ocular surface disease and resultant blindness. Am J Pathol 167:89-95
Cui, Chang-Yi; Durmowicz, Meredith; Ottolenghi, Chris et al. (2003) Inducible mEDA-A1 transgene mediates sebaceous gland hyperplasia and differential formation of two types of mouse hair follicles. Hum Mol Genet 12:2931-40
Cui, Chang-Yi; Durmowicz, Meredith; Tanaka, Tetsuya S et al. (2002) EDA targets revealed by skin gene expression profiles of wild-type, Tabby and Tabby EDA-A1 transgenic mice. Hum Mol Genet 11:1763-73
Durmowicz, Meredith C; Cui, Chang Yi; Schlessinger, David (2002) The EDA gene is a target of, but does not regulate Wnt signaling. Gene 285:203-11

Showing the most recent 10 out of 13 publications