The retroviruses we study were isolated from wild mice and cause a non- inflammatory neurodegenerative disease in mice similar to that caused by the unconventional agents such as scrapie, but this disease does not involve the generation of """"""""prion"""""""" protein. We are using this system as an animal model for studying the pathogenesis of retrovirus-induced neurodegeneration. This laboratory has divided its efforts into three areas: Identification of the viral sequences which mediate tempo and character of the neurovirulence; the host factors which are involved in susceptibility to disease; and the mechanisms involved in the induction of neuronal cytopathology. In the past year we have made considerable headway in all three areas. The disease as it appears in feral mice has a long incubation period of up to 1 year. Using molecular cloning techniques we have identified a 41 base sequence in the 5' leader of the viral genome which appears to be a primary determinant of incubation period. Initial studies indicate that this sequence functions by influencing the efficiency of virus spread in vivo. This sequences residues within an open reading frame for a glycosylated form of the gag polyprotein. Host factors are also involved in the determination of incubation period. We previously found that the CNS is susceptible to infection until the 10th day of age. We have recently found that the length of the incubation period is dependent on a dynamic relationship between this progressive age-dependent restriction of virus replication in the CNS and the rate of virus replication within peripheral organs. This finding has provided considerable insight into the host/virus interactions which determine the kinetics of this """"""""slow virus"""""""" disease. We are continuing our efforts to uncover the pathogenetic mechanisms responsible for the neuronal cytopathology induced by the wild mouse retrovirus. Using microinjection techniques we were able to increase the number and expand the types of cells in the CNS which were infected. Yet the course of the disease was not changed from that seen in neonatally inoculated mice. Thus, it appears that the neurodegeneration induced by this virus requires that a particular stage of postnatal CNS development be attained. This observation, in addition to our previous finding that infected neurons exhibit no evidence of cytopathology and neurons exhibiting cytopathology appear not to be infected, suggest that the neurodegeneration is an indirect consequence of virus infection. Future research goals involve the search for a possible neurotoxin using known inhibitors of NMDA, kainate and quinolinic acid receptors. In addition, we plan to examine the possible role of microglial cell activation in this disease. We will continue our studies of the viral sequences which mediate neurovirulence. Identification of these sequences and their respective function should provide further insight into the pathogenesis of this neurodegenerative disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000086-15
Application #
3803086
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
1991
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Portis, J L; Askovich, P; Austin, J et al. (2009) The degree of folding instability of the envelope protein of a neurovirulent murine retrovirus correlates with the severity of the neurological disease. J Virol 83:6079-86
Clase, Amanda C; Dimcheff, Derek E; Favara, Cynthia et al. (2006) Oligodendrocytes are a major target of the toxicity of spongiogenic murine retroviruses. Am J Pathol 169:1026-38
Trifilo, Matthew J; Yajima, Toshitaka; Gu, Yusu et al. (2006) Prion-induced amyloid heart disease with high blood infectivity in transgenic mice. Science 313:94-7
Dimcheff, Derek E; Faasse, Mark A; McAtee, Frank J et al. (2004) Endoplasmic reticulum (ER) stress induced by a neurovirulent mouse retrovirus is associated with prolonged BiP binding and retention of a viral protein in the ER. J Biol Chem 279:33782-90
Dimcheff, Derek E; Portis, John L; Caughey, Byron (2003) Prion proteins meet protein quality control. Trends Cell Biol 13:337-40
Dimcheff, Derek E; Askovic, Srdjan; Baker, Audrey H et al. (2003) Endoplasmic reticulum stress is a determinant of retrovirus-induced spongiform neurodegeneration. J Virol 77:12617-29
Portis, John L (2002) Perspectives on the role of endogenous human retroviruses in autoimmune diseases. Virology 296:1-5
Igietseme, J U; Portis, J L; Perry, L L (2001) Inflammation and clearance of Chlamydia trachomatis in enteric and nonenteric mucosae. Infect Immun 69:1832-40
Askovic, S; Favara, C; McAtee, F J et al. (2001) Increased expression of MIP-1 alpha and MIP-1 beta mRNAs in the brain correlates spatially and temporally with the spongiform neurodegeneration induced by a murine oncornavirus. J Virol 75:2665-74
Peterson, K E; Robertson, S J; Portis, J L et al. (2001) Differences in cytokine and chemokine responses during neurological disease induced by polytropic murine retroviruses Map to separate regions of the viral envelope gene. J Virol 75:2848-56

Showing the most recent 10 out of 14 publications