This project is concerned with studies of the genetic diversity of Trypanosoma cruzi and the implications of this diversity in the presentation and course of Chagas' disease. Major emphasis during the year has centered on four topics: 1) Utilization of the T. cruzi data base and results of multivariant analysis to model and predict the population dynamics of mixtures of clones; 2) Analysis of the patterns of presentation and disease in inbred mice infected with T. cruzi clones; 3) Development of mutant T. cruzi clones for the production of T. cruzi hybrids; 4) Analysis of the inter-relationship between environmental temperature and the respiratory enzymes of T. cruzi clones. The flow cytometer development program is nearing completion. The instrument has been equipped with quartz optics to permit analysis in the deep UV and Coulter volume orifice and electronics. The performance of the Coulter volume system exceeds all previous attempts to incorporate this parameter into a flow cytometer. This has proven to be an important development for the analysis of cells with unusual symmetry such as Giardia lamblia. A MEDLARS-based, computer-processed bibliography of Chagas' disease (1968-1984) has been completed.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000099-15
Application #
4688352
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
1985
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Tokumasu, Fuyuki; Ostera, Graciela R; Amaratunga, Chanaki et al. (2012) Modifications in erythrocyte membrane zeta potential by Plasmodium falciparum infection. Exp Parasitol 131:245-51
Tokumasu, Fuyuki; Nardone, Glenn A; Ostera, Graciela R et al. (2009) Altered membrane structure and surface potential in homozygous hemoglobin C erythrocytes. PLoS One 4:e5828
Ostera, Graciela; Tokumasu, Fuyuki; Oliveira, Fabiano et al. (2008) Plasmodium falciparum: food vacuole localization of nitric oxide-derived species in intraerythrocytic stages of the malaria parasite. Exp Parasitol 120:29-38
Calvo, Eric; Tokumasu, Fuyuki; Marinotti, Osvaldo et al. (2007) Aegyptin, a novel mosquito salivary gland protein, specifically binds to collagen and prevents its interaction with platelet glycoprotein VI, integrin alpha2beta1, and von Willebrand factor. J Biol Chem 282:26928-38
Hayakawa, Eri; Tokumasu, Fuyuki; Nardone, Glenn A et al. (2007) A Mycobacterium tuberculosis-derived lipid inhibits membrane fusion by modulating lipid membrane domains. Biophys J 93:4018-30
Arie, Takayuki; Fairhurst, Rick M; Brittain, Nathaniel J et al. (2005) Hemoglobin C modulates the surface topography of Plasmodium falciparum-infected erythrocytes. J Struct Biol 150:163-9
Tokumasu, Fuyuki; Fairhurst, Rick M; Ostera, Graciela R et al. (2005) Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots. J Cell Sci 118:1091-8
Tokumasu, Fuyuki; Hwang, Jeeseong; Dvorak, James A (2004) Heterogeneous molecular distribution in supported multicomponent lipid bilayers. Langmuir 20:614-8
Tokumasu, Fuyuki; Jin, Albert J; Feigenson, Gerald W et al. (2003) Atomic force microscopy of nanometric liposome adsorption and nanoscopic membrane domain formation. Ultramicroscopy 97:217-27
Tokumasu, F; Dvorak, J (2003) Development and application of quantum dots for immunocytochemistry of human erythrocytes. J Microsc 211:256-61

Showing the most recent 10 out of 21 publications